scholarly journals Experimental study of perturbations modeled by a membrane in 2D and 3D boundary layers

2021 ◽  
Vol 2119 (1) ◽  
pp. 012001
Author(s):  
I A Sadovskii ◽  
M M Katasonov

Abstract The work is devoted to experimental studies of the dynamics of the development of perturbations introduced by a membrane under various conditions. The studies were carried out under conditions of a low and moderate degree of free-flow turbulence. It is shown that the impulsive motion of the membrane generates a localized longitudinal structure in the boundary layer, as well as wave packets at its fronts. A circular membrane generates wave packets consisting of forward and oblique waves, while a rectangular membrane generates predominantly forward waves. A moderate degree of turbulence inhibits the development of wave packets at the linear stage and intensifies at the nonlinear stage. The separation of the boundary layer stimulates an increase in the amplitude of the wave packets.

2021 ◽  
Vol 16 (1) ◽  
pp. 65-80
Author(s):  
Ivan A. Sadovsky ◽  
Mikhail M Katasonov ◽  
Alexander M. Pavlenko

In a wind tunnel on a flat plate in a separated flow behind a rectangular step, the emergence and development of localized disturbances generated by low-frequency impulse deviations of the local surface section under conditions of low and moderate degrees of the incoming flow turbulence is studied. The results were obtained by hot-wire anemometry at low subsonic flow velocity. It was found that impulse deviations of the wall generate disturbances, which are socalled Streaky structures and wave packets of oscillations. The separation of the laminar boundary layer accelerates the growth of wave packets with subsequent turbulization of the near-wall flow. The specific features of the behavior of localized disturbances under conditions of moderate degree of free-stream turbulence are revealed.


2021 ◽  
Vol 16 (1) ◽  
pp. 81-90
Author(s):  
Aleksey A. Yatskikh ◽  
Alexandra V. Panina ◽  
Vasilii L. Kocharin ◽  
Yury G. Yermolaev ◽  
Alexander D. Kosinov ◽  
...  

The results of experimental studies on the impact of periodic flow modulation on the development of natural disturbances and artificial localized wave packets in the boundary layer of a swept wing with a leading edge swept angle of 40 degrees at a Mach number M = 2.5 are presented. The boundary layer was modulated using periodic roughness on the model surface. Artificial wave packets were generated by a pulsed glow discharge. Hot-wire anemometer measurements showed that, according to the experimental conditions, periodic modulation of the boundary layer leads to the stabilization of the development of controlled localized disturbances and to an increase in the growth of natural disturbances.


2010 ◽  
Vol 650 ◽  
pp. 181-214 ◽  
Author(s):  
ANTONIOS MONOKROUSOS ◽  
ESPEN ÅKERVIK ◽  
LUCA BRANDT ◽  
DAN S. HENNINGSON

The global linear stability of the flat-plate boundary-layer flow to three-dimensional disturbances is studied by means of an optimization technique. We consider both the optimal initial condition leading to the largest growth at finite times and the optimal time-periodic forcing leading to the largest asymptotic response. Both optimization problems are solved using a Lagrange multiplier technique, where the objective function is the kinetic energy of the flow perturbations and the constraints involve the linearized Navier–Stokes equations. The approach proposed here is particularly suited to examine convectively unstable flows, where single global eigenmodes of the system do not capture the downstream growth of the disturbances. In addition, the use of matrix-free methods enables us to extend the present framework to any geometrical configuration. The optimal initial condition for spanwise wavelengths of the order of the boundary-layer thickness are finite-length streamwise vortices exploiting the lift-up mechanism to create streaks. For long spanwise wavelengths, it is the Orr mechanism combined with the amplification of oblique wave packets that is responsible for the disturbance growth. This mechanism is dominant for the long computational domain and thus for the relatively high Reynolds number considered here. Three-dimensional localized optimal initial conditions are also computed and the corresponding wave packets examined. For short optimization times, the optimal disturbances consist of streaky structures propagating and elongating in the downstream direction without significant spreading in the lateral direction. For long optimization times, we find the optimal disturbances with the largest energy amplification. These are wave packets of Tollmien–Schlichting waves with low streamwise propagation speed and faster spreading in the spanwise direction. The pseudo-spectrum of the system for real frequencies is also computed with matrix-free methods. The spatial structure of the optimal forcing is similar to that of the optimal initial condition, and the largest response to forcing is also associated with the Orr/oblique wave mechanism, however less so than in the case of the optimal initial condition. The lift-up mechanism is most efficient at zero frequency and degrades slowly for increasing frequencies. The response to localized upstream forcing is also discussed.


Author(s):  
Longxin Zhang ◽  
Shaowen Chen ◽  
Hao Xu ◽  
Jun Ding ◽  
Songtao Wang

Compared with suction slots, suction holes are (1) flexible in distribution; (2) alterable in size; (3) easy to fabricate and (4) high in strength. In this paper, the numerical and experimental studies for a high turning compressor cascade with suction air removed by using suction holes in the end-wall at a low Mach numbers are carried out. The main objective of the investigation is to study the influence of different suction distributions on the aerodynamic performance of the compressor cascade and to find a better compound suction scheme. A numerical model was first made and validated by comparing with the experimental results. The computed flow visualization and exit parameter distribution showed a good agreement with experimental data. Second, the model was then used to simulate the influence of different suction distributions on the aerodynamic performance of the compressor cascade. A better compound suction scheme was obtained by summarizing numerical results and tested in a low speed wind tunnel. As a result, the compound suction scheme can be used to significantly improve the performance of the compressor cascade because the corner separation gets further suppressed.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Louis B. Wonnell ◽  
James Chen

A boundary layer with Re = 106 is simulated numerically on a flat plate using morphing continuum theory. This theory introduces new terms related to microproperties of the fluid. These terms are added to a finite-volume fluid solver with appropriate boundary conditions. The success of capturing the initial disturbances leading to turbulence is shown to be a byproduct of the physical and mathematical rigor underlying the balance laws and constitutive relations introduced by morphing continuum theory (MCT). Dimensionless equations are introduced to produce the parameters driving the formation of disturbances leading to turbulence. Numerical results for the flat plate are compared with the experimental results determined by the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) database. Experimental data show good agreement inside the boundary layer and in the bulk flow. Success in predicting conditions necessary for turbulent and transitional (T2) flows without ad hoc closure models demonstrates the theory's inherent advantage over traditional turbulence models.


2007 ◽  
Vol 7 (5) ◽  
pp. 15105-15154 ◽  
Author(s):  
A. Petzold ◽  
J. Hasselbach ◽  
P. Lauer ◽  
R. Baumann ◽  
K. Franke ◽  
...  

Abstract. Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&amp;}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)−1 by number for non-volatile particles and 174±43 mg (kg fuel)−1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.


2017 ◽  
Vol 12 (1) ◽  
pp. 57-65
Author(s):  
Alex Yatskih ◽  
Marina Rumenskikh ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
Nikolay Semionov ◽  
...  

The results of experimental study of excitation of localized in time and space controlled disturbances (wave packets) in a supersonic swept-wing boundary layer are presented. The experiments were performed at Mach number M = 2 on the model of wing with a lenticular profile and a 40 degrees sweep angle of the leading edge at zero angle of attack. Wave packets were generated by a pulse electric discharge on the surface of the model. A structure of controlled wave packet was studied. It was found that the wave packet has an asymmetric shape. Comparison with the case of twodimensional boundary layer was done.


Sign in / Sign up

Export Citation Format

Share Document