scholarly journals Aeroacoustics behavioral study of Savonius wind turbine

2021 ◽  
Vol 2128 (1) ◽  
pp. 012033
Author(s):  
Maymouna Malainine ◽  
Amany Khaled ◽  
Sameh M Shabaan

Abstract Vertical Axis Wind Turbines (VAWTs) are appropriate for use in populated areas. If VAWTs were installed at residential areas, the generated aerodynamic noise can be harmful in a way or another. Therefore, in the present study, the aero-acoustics of the conventional Savonius Wind turbine was investigated using Computational Fluid Dynamics (CFD). Both the Unsteady Reynolds-averaged Navier-Stokes (URANS) equations and impermeable Ffowcs Wiliams and Hawkings (FW-H) equation were simultaneously solved. The effect of speed ratio was also studied. The results indicate that; the pressure is inversely proportional to the speed ratio. Additionally, the velocity has been increased due to the increase of the tip speed ratio. Finally, it has improved that for the majority of receivers, the overall sound level increases with increasing speed ratio.

2021 ◽  
Vol 11 (17) ◽  
pp. 8011
Author(s):  
Sajad Maleki Dastjerdi ◽  
Kobra Gharali ◽  
Armughan Al-Haq ◽  
Jatin Nathwani

Two novel four-blade H-darrieus vertical axis wind turbines (VAWTs) have been proposed for enhancing self-start capability and power production. The two different airfoil types for the turbines are assessed: a cambered S815 airfoil and a symmetric NACA0018 airfoil. For the first novel wind turbine configuration, the Non-Similar Airfoils 1 (NSA-1), two NACA0018 airfoils, and two S815 airfoils are opposite to each other. For the second novel configuration (NSA-2), each of the S815 airfoils is opposite to one NACA0018 airfoil. Using computational fluid dynamics (CFD) simulations, static and dynamic conditions are evaluated to establish self-starting ability and the power coefficient, respectively. Dynamic stall investigation of each blade of the turbines shows that NACA0018 under dynamic stall impacts the turbine’s performance and the onset of dynamic stall decreases the power coefficient of the turbine significantly. The results show that NSA-2 followed by NSA-1 has good potential to improve the self-starting ability (13.3%) compared to the turbine with symmetric airfoils called HT-NACA0018. In terms of self-starting ability, NSA-2 not only can perform in about 66.67% of 360° similar to the wind turbine with non-symmetric airfoils (named HT-S815) but the power coefficient of NSA-2 at the design tip speed ratio of 2.5 is also 4.5 times more than the power coefficient of HT-S815; the power coefficient difference between HT-NACA0018 and HT-S815 (=0.231) is decreased significantly when HT-S815 is replaced by NSA-2 (=0.076). These novel wind turbines are also simple.


Author(s):  
Dygku. Asmanissa Awg. Osman ◽  
Norzanah Rosmin ◽  
Nor Shahida Hasan ◽  
Baharruddin Ishak ◽  
Aede Hatib Mustaamal@Jamal ◽  
...  

The air streams from the outlet of an air compressor can be used to generate electricity. For instance, if a micro-sized Vertical-Axis Wind-Turbine (VAWT) is installed towards the airflow, some amount of electricity can be generated before being stored in a battery bank. The research’s objectives are to design, fabricate and analyze the performance of Helical Savonius VAWT blade rotors, which is tested with and without using a wind concentrator. The Helical Savonius VAWT is tested at 0 cm without the concentrator, whereas the blade rotor is tested at concave-blade position when using the concentrator. The blade and the wind concentrator designs were based on the dimensions and the constant airflow of the air compressor. The findings suggested that the blade produced its best performance when tested using wind concentrator at concave-blade position in terms of angular speed (<em>ω</em>), tip speed ratio (<em>TSR</em>) and the generated electrical power (<em>P</em><em><sub>E</sub></em>). The findings concluded that the addition of wind concentrator increases the airflow which then provided better performances on the blades.


Author(s):  
Akiyoshi Iida ◽  
Akisato Mizuno ◽  
Kyoji Kamemoto

Unsteady flow field and flow induced noise of vertical axis wind turbine are numerically investigated. The flow field is numerically calculated by the vortex method with core-spreading model. This simulation obtains aerodynamic performance and aerodynamic forces. Aerodynamic noise is also simulated by using Ffowcs Williams-Hawkings equation with compact body and low-Mach number assumptions. Tip speed of rotor blades are not so high, then the contribution of the moving sound source is smaller than that of the dipole sound source. Since the maximum power coefficient of VAWT can be obtained at lower tip-speed ratio compared to the conventional, horizontal axis wind turbines, the aerodynamic noise from vertical axis wind turbine is smaller than that of the conventional wind turbines at the same aerodynamic performance. This result indicates that the vertical axis wind turbines are useful to develop low-noise wind turbines.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Yan Yan ◽  
Eldad Avital ◽  
John Williams ◽  
Jiahuan Cui

Abstract A numerical study was carried out to investigate the effects of a Gurney flap (GF) on the aerodynamics performance of the NACA 00 aerofoil and an associated three-blade rotor of a H-type Darrieus wind turbine. The flow fields around a single aerofoil and the vertical axis wind turbine (VAWT) rotor are studied using unsteady Reynolds-averaged Navier–Stokes equations (URANS). The height of GF ranges from 1% to 5% of the aerofoil chord length. The results show that the GF can increase the lift and lift-to-drag ratio of the aerofoil as associated with the generation of additional vortices near the aerofoil trailing edge. As a result, adding a GF can significantly improve the power coefficient of the VAWT at low tip speed ratio (TSR), where it typically gives low power production. The causing mechanism is discussed in detail, pointing to flow separation and dynamic stall delay.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kaprawi Sahim ◽  
Dyos Santoso ◽  
Dewi Puspitasari

Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed.


Author(s):  
Saowalak Thongdee ◽  
Churat Tararuk ◽  
Natthawud Dussadee ◽  
Rameshprabu Ramaraj ◽  
Tanate Chaichana

This research aimed to compare the performance of Savonius vertical axis wind turbines through blade numbers and different blade angles. In this study, applicable turbines having 4, 6, 8, 12, 16 and 18 numbers of blades with the angles of the blades of -15°, -5°, 0°, 5° and 15°, respectively. The rotor used was a semicircle shaped blade made from PVC material and has a blade diameter of 6 cm and 30 cm for both rotor diameter and height. The turbine was tested deadweight range of 0-0.49 kg at 4 m/s wind speed. The results showed that the blade angle has a positive effect on increasing the power and torque coefficient of Savonius wind turbine, specifically on blades less than 16. The highest power and torque coefficient was obtained from the turbine having16 blades at an angle of 5°. This configuration also found that the maximum power and torque coefficient in the tip speed ratio ranging from 0.3-0.4 are 0.2519 and 0.5858, respectively.


Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Jeffery Lewis ◽  
Mark Fuller

With the growing demand of energy worldwide, conventional energy is becoming more and more scarce and expensive. The United States is already facing an energy crunch as the fuel price soars. Therefore, there is an obvious need for alternative sources of energy—perhaps more than ever. Wind is among the most popular and fastest-growing forms of electricity generation in the world, which is pollution free and available almost at any time of the day, especially in the coastal regions. The main attraction of the vertical-axis wind turbine is its manufacturing simplicity compared to that of the horizontal-axis wind turbine. Among all different vertical axis wind turbines, Savonius wind turbine is the simplest one. Operation of the Savonius wind turbine is based on the difference of the drag force on its semi-spherical blades, depending on whether the wind is striking the convex or the concave part of the blades. The advantage of this type of wind turbine is its good self-starting and wind directional independence characteristic. It, however, has a relatively lower efficiency in comparison with the lift type vertical-axis wind turbines. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and wind power on a small scale. The main objective of this ongoing research work is to improve the aerodynamic performance of vertical axis Savonius wind turbine. Wind tunnel investigation has been performed on aerodynamic characteristics, such as drag coefficients, and static torque coefficient of three-bladed Savonius rotor model. Also the computational fluid dynamics (CFD) simulation has been performed using FLUENT software to analyze the static rotor aerodynamics such as drag coefficients and torque coefficient, and these results are compared with the corresponding experimental results for verification.


Author(s):  
Jay P. Wilhelm ◽  
Emily D. Pertl ◽  
Franz A. Pertl ◽  
James E. Smith

Conventional straight bladed vertical axis wind turbines are typically designed to produce maximum power at tip speed ratio, but power production can suffer when operating outside of the design range. These turbines, unless designed specifically for low speed operation, may require rotational startup assistance. Circulation control methods, such as using blowing slots on the trailing edge could be applied to a Vertical Axis Wind Turbine (VAWT) blade. Improvements to the amount of power developed at lower speeds and elimination or reduction of startup assistance could be possible with this lift augmentation. Selection of a beneficial rotor solidity and control over when to utilize the blowing slots for the CC-VAWT (Circulation Controlled-Vertical Axis Wind Turbine) appears to have a profound impact on overall performance. Preliminary performance predictions indicate that at a greater range of rotor solidities, the CC-VAWT can have overall performance levels that exceed a conventional VAWT. This paper describes the performance predictions and solidity selection of a circulation controlled vertical axis wind turbine that can operate at higher overall capture efficiencies than a conventional VAWT.


2018 ◽  
Vol 841 ◽  
pp. 746-766 ◽  
Author(s):  
Abel-John Buchner ◽  
Julio Soria ◽  
Damon Honnery ◽  
Alexander J. Smits

Vertical axis wind turbine blades are subject to rapid, cyclical variations in angle of attack and relative airspeed which can induce dynamic stall. This phenomenon poses an obstacle to the greater implementation of vertical axis wind turbines because dynamic stall can reduce turbine efficiency and induce structural vibrations and noise. This study seeks to provide a more comprehensive description of dynamic stall in vertical axis wind turbines, with an emphasis on understanding its parametric dependence and scaling behaviour. This problem is of practical relevance to vertical axis wind turbine design but the inherent coupling of the pitching and velocity scales in the blade kinematics makes this problem of more broad fundamental interest as well. Experiments are performed using particle image velocimetry in the vicinity of the blades of a straight-bladed gyromill-type vertical axis wind turbine at blade Reynolds numbers of between 50 000 and 140 000, tip speed ratios between $\unicode[STIX]{x1D706}=1$ to $\unicode[STIX]{x1D706}=5$, and dimensionless pitch rates of $0.10\leqslant K_{c}\leqslant 0.20$. The effect of these factors on the evolution, strength and timing of vortex shedding from the turbine blades is determined. It is found that tip speed ratio alone is insufficient to describe the circulation production and vortex shedding behaviour from vertical axis wind turbine blades, and a scaling incorporating the dimensionless pitch rate is proposed.


2018 ◽  
Vol 14 (3) ◽  
pp. 141-148
Author(s):  
Abdullateef A. Jadallah ◽  
Sahar R. Farag ◽  
Jinan D. Hamdi

Developments are carried out to enhance the performance of vertical axis wind turbines (VAWT). This paper studies the performance of the ducted wind turbine with convergent duct (DAWT). Basically, the duct technique is utilized to provide the desired wind velocity facing the turbine. Methodology was developed to estimate the decisive performance parameter and to present the effect of the convergent duct with different inlet angles. The ducted wind turbine was analyzed and simulated using MATLAB software and numerically using ANSYS-Fluent 17.2. Result of both approaches were presented and showed good closeness for the two cases of covering angles 12  and 20 respectively. Results also showed that the convergent duct with an inlet angle 12   and 20  improved the coefficient of performance at a specified tip speed ratio by 25.8% and 33.33% respectively in the productivity of wind turbine.  


Sign in / Sign up

Export Citation Format

Share Document