Experimental and Numerical Investigations on Drag and Torque Characteristics of Three-Bladed Savonius Wind Turbine

Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Jeffery Lewis ◽  
Mark Fuller

With the growing demand of energy worldwide, conventional energy is becoming more and more scarce and expensive. The United States is already facing an energy crunch as the fuel price soars. Therefore, there is an obvious need for alternative sources of energy—perhaps more than ever. Wind is among the most popular and fastest-growing forms of electricity generation in the world, which is pollution free and available almost at any time of the day, especially in the coastal regions. The main attraction of the vertical-axis wind turbine is its manufacturing simplicity compared to that of the horizontal-axis wind turbine. Among all different vertical axis wind turbines, Savonius wind turbine is the simplest one. Operation of the Savonius wind turbine is based on the difference of the drag force on its semi-spherical blades, depending on whether the wind is striking the convex or the concave part of the blades. The advantage of this type of wind turbine is its good self-starting and wind directional independence characteristic. It, however, has a relatively lower efficiency in comparison with the lift type vertical-axis wind turbines. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and wind power on a small scale. The main objective of this ongoing research work is to improve the aerodynamic performance of vertical axis Savonius wind turbine. Wind tunnel investigation has been performed on aerodynamic characteristics, such as drag coefficients, and static torque coefficient of three-bladed Savonius rotor model. Also the computational fluid dynamics (CFD) simulation has been performed using FLUENT software to analyze the static rotor aerodynamics such as drag coefficients and torque coefficient, and these results are compared with the corresponding experimental results for verification.

2019 ◽  
pp. 0309524X1987402 ◽  
Author(s):  
Gareth Erfort ◽  
Theodor W von Backström ◽  
Gerhard Venter

Vertical-axis wind turbines have been confined to small-scale generation in urban environments where their omnidirectional capability offers them an advantage over the more ubiquitous horizontal-axis wind turbine. With a drive towards renewable energy, more opportunities exist for the implementation of wind turbines in a multitude of environments. Based on its inherent operational drawbacks, the vertical-axis wind turbine has not undergone extensive investigation. Recently, there has been a resurgence of interest in the technology. This article addresses the torque ripple, a variation in torque produced by the turbine, present during operation. The variation in torque generated by a vertical-axis wind turbine increases the likelihood of failure due to fatigue. Current treatment is symptomatic and addresses the result of the torque fluctuation and not the cause. A novel blade design, capable of altering the lift and drag response through shape alteration, is presented as a solution. The blade design and operation is achieved through genetic algorithm optimization and computational fluid dynamic simulations. Comparisons with previous work show the novel blade presented here surpasses the reduction seen with pitching solutions. A 25% reduction in torque ripple was demonstrated for a 17% reduction in performance coefficient using the surface distortion approach. This surpasses the foil pitching approach which achieved a 15% torque ripple reduction for the same loss in performance coefficient.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1870 ◽  
Author(s):  
Lidong Zhang ◽  
Kaiqi Zhu ◽  
Junwei Zhong ◽  
Ling Zhang ◽  
Tieliu Jiang ◽  
...  

The central shaft is an important and indispensable part of a small scale urban vertical axis wind turbines (VAWTs). Normally, it is often operated at the same angular velocity as the wind turbine. The shedding vortices released by the rotating shaft have a negative effect on the blades passing the wake of the wind shaft. The objective of this study is to explore the influence of the wake of rotating shaft on the performance of the VAWT under different operational and physical parameters. The results show that when the ratio of the shaft diameter to the wind turbine diameter (α) is 9%, the power loss of the wind turbine in one revolution increases from 0% to 25% relative to that of no-shaft wind turbine (this is a numerical experiment for which the shaft of the VAWT is removed in order to study the interactions between the shaft and blade). When the downstream blades pass through the wake of the shaft, the pressure gradient of the suction side and pressure side is changed, and an adverse effect is also exerted on the lift generation in the blades. In addition, α = 5% is a critical value for the rotating shaft wind turbine (the lift-drag ratio trend of the shaft changes differently). In order to figure out the impacts of four factors; namely, tip speed ratios (TSRs), α, turbulence intensity (TI), and the relative surface roughness value (ks/ds) on the performance of a VAWT system, the Taguchi method is employed in this study. The influence strength order of these factors is featured by TSRs > ks/ds > α > TI. Furthermore, within the range we have analyzed in this study, the optimal power coefficient (Cp) occurred under the condition of TSR = 4, α = 5%, ks/ds = 1 × 10−2, and TI = 8%.


Author(s):  
Nan Yan ◽  
Tyamo Okosun ◽  
Sanjit K. Basak ◽  
Dong Fu ◽  
John Moreland ◽  
...  

Virtual Reality (VR) is a rising technology that creates a computer-generated immersive environment to provide users a realistic experience, through which people who are not analysis experts become able to see numerical simulation results in a context that they can easily understand. VR supports a safe and productive working environment in which users can perceive worlds, which otherwise could be too complex, too dangerous, or impossible or impractical to explore directly, or even not yet in existence. In recent years, VR has been employed to an increasing number of scientific research areas across different disciplines, such as numerical simulation of Computational Fluid Dynamics (CFD) discussed in present study. Wind flow around wind turbines is a complex problem to simulate and understand. Predicting the interaction between wind and turbine blades is complicated by issues such as rotating motion, mechanical resistance from the breaking system, as well as inter-blade and inter-turbine wake effects. The present research uses CFD numerical simulation to predict the motion and wind flow around two types of turbines: 1) a small scale Vertical Axis Wind Turbine (VAWT) and 2) a small scale Horizontal Axis Wind Turbine (HAWT). Results from these simulations have been used to generate virtual reality (VR) visualizations and brought into an immersive environment to attempt to better understand the phenomena involved.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kaprawi Sahim ◽  
Dyos Santoso ◽  
Dewi Puspitasari

Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed.


The consumption of electricity in urban as well as rural is increasing every day and became an essential commodity for household and industrial purposes. Unfortunately the availability of electrical energy in India is not sufficient to the required demand and it is essential to discover and generate energy from non-conventional sources with cheap cost. On the same time it is necessary to reduce the consumption of conventional sources and to save fuel. Among all the renewable resources, wind is one of the best resources available all the time at free of cost. Especially vertical axis wind turbines (VAWT) are self-starting, omni directional. They require no yaw mechanism to continuously orient towards the wind direction and provide a more reliable energy conversion technology, as compared to horizontal axis wind turbine. Particularly savonius vertical axis wind turbines (SVAWT) are suitable and practically possible at low or uncertain wind speed regimes. They can be fitted on rooftops and also suitable for the urban areas where electricity is not available properly. This project deals with the fabrication and performance evaluation of savonius vertical axis wind turbine using two blade rotor. The amount of power developed by the wind turbine is calculated under theoretical and practical conditions and aerodynamics coefficients are also estimated. And various design parameters of savonious rotor are identified and determined.


Author(s):  
Saowalak Thongdee ◽  
Churat Tararuk ◽  
Natthawud Dussadee ◽  
Rameshprabu Ramaraj ◽  
Tanate Chaichana

This research aimed to compare the performance of Savonius vertical axis wind turbines through blade numbers and different blade angles. In this study, applicable turbines having 4, 6, 8, 12, 16 and 18 numbers of blades with the angles of the blades of -15°, -5°, 0°, 5° and 15°, respectively. The rotor used was a semicircle shaped blade made from PVC material and has a blade diameter of 6 cm and 30 cm for both rotor diameter and height. The turbine was tested deadweight range of 0-0.49 kg at 4 m/s wind speed. The results showed that the blade angle has a positive effect on increasing the power and torque coefficient of Savonius wind turbine, specifically on blades less than 16. The highest power and torque coefficient was obtained from the turbine having16 blades at an angle of 5°. This configuration also found that the maximum power and torque coefficient in the tip speed ratio ranging from 0.3-0.4 are 0.2519 and 0.5858, respectively.


Author(s):  
Changduk Kong ◽  
Haseung Lee

Since the energy crisis and the environmental issue have been focused due to excessive fossil fuel consumption, the wind power has been considered as an important renewable energy source. Recently, several MW class large scale wind turbine systems have been developed in some countries. Even though the large scale wind turbine can effectively produce the electrical power, the small scale wind turbines have been continuously developed due some advantages, for instance, it can be easily built by low cost without any limitation of location, i.e. even in city. In case of small scale wind turbines, the vertical axis wind turbine (VAWT) is used in city having frequent wind direction change, even though it has a bit lower efficient than the horizontal axis wind turbine. Furthermore, most small scale wind turbine systems have been designed at the rated wind speed of around 12m/s. This work is to design a high efficiency 500W class composite VAWT blade which is applicable to relatively low speed region. In the aerodynamic design of blade, the parametric studies are carried out to decide an optimal aerodynamic configuration. The aerodynamic efficiency and performance of the designed VAWT is confirmed by the CFD analysis. The structural design is performed by the load case study, the initial sizing using the netting rule and the rule of mixture, the structural analysis using FEM, the fatigue life estimation and the structural test. The prototype blade is manufactured by the hand lay-up and the matched die molding. The experimental structural test results are compared with the FEM analysis results. Finally, to evaluate the prototype VAWT including designed blades, the performance test is performed using a truck to simulate the various range wind speeds and some measuring equipments. According to the performance evaluation result, the estimated performance is well agreed with the experimental test result in all operating ranges.


Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Ahsan Mian

Considerable improvements in the aerodynamic performance of a vertical axis wind turbine (VAWT) can be achieved by integrating computational fluid dynamics (CFD) simulation and wind tunnel investigation in their design improvement. With the growing demand for energy worldwide, conventional sources are becoming more scarce and expensive. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. Industry experts predict that, with proper development, wind energy could provide 20% of the nation’s energy needs. Vertical axis wind turbines (VAWTs) may be as efficient and practical as, and simpler, and significantly cheaper to build and maintain than, horizontal axis wind turbines (HAWTs). They have other inherent advantages; for example, they always face the wind. VAWTs include both a drag-type configuration, such as the Savonius rotor, and a lift-type configuration, such as the Darrieus rotor. The Savonius wind turbine is the simplest. Its operation depends on the difference in drag force when the wind strikes either the convex or concave part of its semi-cylindrical blades. It is good at self-starting and works independently of wind direction. However, its efficiency is relatively lower than that of the lift-type VAWTs. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and to generate wind power on a small scale and its large starting torque makes it suitable for starting other types of wind turbines that have inferior starting characteristics. Recently, some generators with high torque at low rotational speed, suitable for small-scale wind turbines, have been developed, suggesting that Savonius rotors may yet be used to generate electric power. The main goal of this research work is to improve the aerodynamic performance of the three bladed vertical axis Savonius wind turbine. Based on this goal, the objective of this project is to study the performance characteristics of the Savonius wind turbine scale models both experimentally and numerically. The turbine scale models will have different designs with different overlap ratios (ratio of gap between two adjacent blades and the rotor diameter) and without overlap within three blades. The experimental measurements and testing will be conducted in front of a low speed subsonic wind tunnel at different Reynolds number and the computational fluid dynamic (CFD) flow simulation around those design models will be performed by commercial CFD software FLUENT and GAMBIT.


Author(s):  
Jim Shih-Jiun Chen ◽  
Zhi Chen ◽  
Saroj Biswas ◽  
Jiun-Jih Miau ◽  
Cheng-Han Hsieh

Vertical axis wind turbines (VAWT) have been valued in recent years for their low manufacturing cost, structural simplicity and convenience of applications in urban settings. Despite their advantages, VAWTs have several drawbacks including low power coefficient, poor self-starting ability, negative torque and the associated cyclic stress at certain azimuth angles. Using pitch control ideas, our research is aimed at solving the above problems. In this study, a small-scale Giromill VAWT using three NACA-0015 airfoils with a cord length of 0.09 m and a wind turbine radius of 0.6 m is investigated. During each rotation, the angle of attack depends on the wind velocity, angular velocity and current azimuth angle for each turbine blade. Negative torques at certain angles are attributed to the inherent unsteady aerodynamic behavior at high angles of attack. Without optimal pitch control, the Double-Multiple Streamtube (DMS) model predicts negative torques at certain azimuth angles and very low power coefficients for tip speed ratios below 2.5. The unfavorable negative torques are eliminated using an optimal pitch control strategy, which maximizes the tangential force coefficients and thus the torque coefficients by iterations of all possible relative angles of attack for various tip speed ratios. As a result, the power coefficient is significantly improved especially at low tip speed ratios in the range of zero to three (λ = 0 – 3). Blade pitch control can also solve the self-starting problem and reduce the vibration of vertical axis wind turbines.


2021 ◽  
Author(s):  
Emmanuel Branlard ◽  
Ian Brownstein ◽  
Benjamin Strom ◽  
Jason Jonkman ◽  
Scott Dana ◽  
...  

Abstract. In this work, we extend the AeroDyn module of OpenFAST to be able to support arbitrary collections of wings, rotors and towers. The new standalone AeroDyn driver supports arbitrary motions of the lifting-surfaces and complex turbulent inflows. We describe the features and updates necessary for the implementation of the new AeroDyn driver. We present different case studies of the driver to illustrate its application to concepts such as: multi-rotors, kites, or vertical axis wind turbines. We perform verification and validation of some of the new features using the following test cases: an elliptical wing, a horizontal axis wind turbine, and a 2D and 3D vertical axis wind turbines. The wind turbine simulations are compared to field measurements. We use this opportunity to point out some limitations of current models and highlight areas which we think should be the focus of future research in wind turbine aerodynamics.


Sign in / Sign up

Export Citation Format

Share Document