scholarly journals On one method of numerical modeling of piezoconductive processes of a two-phase fluid system in a fractured-porous reservoir

2021 ◽  
Vol 2131 (2) ◽  
pp. 022001
Author(s):  
Yu O Bobreneva ◽  
P I Rahimly ◽  
Yu A Poveshchenko ◽  
V O Podryga ◽  
L V Enikeeva

Abstract A method of numerical modeling based on splitting by physical processes of two-phase fluid transfer in a formation with fractured-porous reservoirs is described. Reservoirs of this type have a natural fracture system and are described by the dual porosity model. A four-block mathematical model of the fluid redistribution between a pore-type matrix and a natural fracturing pattern is proposed and studied. The resulting system is complex and entails a number of difficulties associated with a large number of variables and the absence of important properties of a linearized system of equations, such as self-adjointness and symmetry, which are present in the description of piezoconductive processes. The complete splitting by physical processes is carried out to solve this problem. The resulting split model is differentially equivalent to the discrete initial balance equations of the system (conservation of the mass components of the fluids and the total energy of the system), written in divergent form. This approach is associated with a nonlinear approximation of the grid functions in time, which depends on the fraction of the volume occupied by the fluids in the pores, and is easy to implement.

2021 ◽  
pp. 1-20
Author(s):  
Yulia Olegovna Bobreneva ◽  
Parvin Ilgar gizi Rahimly ◽  
Victoria Olegovna Podryga ◽  
Svetlana Sergeevna Bazhitova ◽  
Ahmed Elsaid Ezeldin Bakeer Ali Bakeer ◽  
...  

In this work, the authors propose an algorithm for solving the problem of the process of mass transfer of a two-phase fluid in a fractured-porous reservoir in a one-dimensional formulation. The presence of natural fractures in such reservoirs impedes various types of exploration during field development. Fractured porous reservoirs are characterized by intense exchange fluid flow between fractures and porous blocks. Each system under consideration has its own individual set of filtration-capacity parameters that complicates the problem. To study the mass transfer of a two-phase liquid in a medium with double porosity, a four-block mathematical model with splitting by physical processes is proposed. The model is described by a system of partial differential equations. The method of splitting by physical processes forms two functional blocks: by water saturation and piezoconductivity. For the numerical solution of this system, an absolutely stable implicit finite-difference scheme is made in the spatially one-dimensional case. On the basis of the proposed difference scheme, pressures and saturations in the matrix and fracture system are calculated.


Author(s):  
Юлия Олеговна ◽  
Равиль Узянбаев ◽  
Ирек Губайдуллин

2011 ◽  
Vol 46 (1) ◽  
pp. 90-96
Author(s):  
G. R. Idrisova ◽  
L. A. Kovaleva ◽  
M. V. Mavletov ◽  
A. A. Musin

2017 ◽  
Author(s):  
Andrey Kozelkov ◽  
Andrey Kurkin ◽  
Efim Pelinovsky ◽  
Vadim Kurulin ◽  
Elena Tyatyushkina

Abstract. The results of the numerical simulation of possible hydrodynamic perturbations in Lake Chebarkul (Russia) as a consequence of the meteorite fall of 2013 (Feb. 15) are presented. The numerical modeling is based on the Navier-Stokes equations for a two-phase fluid. The results of the simulation of a meteorite entering the water at an angle of 20 degrees are given. Numerical experiments are carried out both when the lake is covered with ice and when it isn't. The estimation of size of the destructed ice cover is made. It is shown that the size of the observed ice-hole at the place of the meteorite fall is in good agreement with the theoretical predictions, as well as with other estimates. The heights of tsunami waves generated by a small meteorite entering the lake are small enough (a few centimeters) according to the estimations. However, the danger of a tsunami of meteorite or asteroid origin should not be underestimated.


2017 ◽  
Vol 17 (5) ◽  
pp. 671-683 ◽  
Author(s):  
Andrey Kozelkov ◽  
Andrey Kurkin ◽  
Efim Pelinovsky ◽  
Vadim Kurulin ◽  
Elena Tyatyushkina

Abstract. The results of the numerical simulation of possible hydrodynamic perturbations in Lake Chebarkul (Russia) as a consequence of the meteorite fall of 2013 (15 February) are presented. The numerical modeling is based on the Navier–Stokes equations for a two-phase fluid. The results of the simulation of a meteorite entering the water at an angle of 20° are given. Numerical experiments are carried out both when the lake is covered with ice and when it is not. The estimation of size of the destructed ice cover is made. It is shown that the size of the observed ice hole at the place of the meteorite fall is in good agreement with the theoretical predictions, as well as with other estimates. The heights of tsunami waves generated by a small meteorite entering the lake are small enough (a few centimeters) according to the estimations. However, the danger of a tsunami of meteorite or asteroid origin should not be underestimated.


Sign in / Sign up

Export Citation Format

Share Document