scholarly journals Kinematic analysis and simulation of 6-DOF vehicle driving simulator

2021 ◽  
Vol 2137 (1) ◽  
pp. 012035
Author(s):  
Wenbin Shu ◽  
Haonan Yan ◽  
Lijun Meng

Abstract In order to reasonably design the six degrees of freedom turntable (hereinafter referred to as the transfer table), based on the structure size and motion index parameters of the turntable, The motion mechanics calculation model was established to simulate and analyze the mechanical variation curve of singing platform under different motion modes. The analysis shows that when the upper platform load and the component mass are 3000 kg, the maximum action force of the rotating platform support moving cylinder is 1376.4 kg.

Mechanik ◽  
2019 ◽  
Vol 92 (8-9) ◽  
pp. 571-573
Author(s):  
Jarosław Jankowski

The article presents the continuation of work related to the creation of a car driving simulator with a weight of up to 3.5 tons adapted to selected disabilities. The article contains a description of the developed motion platform with six degrees of freedom and the cockpit. In order to ensure the possibility of being managed by the largest group of people with physical disabilities, selected support solutions were implemented. These devices can be easily dismantled to test others. The platform together with the cockpit is controlled from the simulator application and the image is presented to the simulation participant in 3D projection glasses and optionally on a three-segment screen.


2013 ◽  
Vol 401-403 ◽  
pp. 525-530
Author(s):  
Guang Pan ◽  
Yao Shi ◽  
Peng Wang ◽  
Xiao Xu Du

During the process of exiting from water, the unpowered carrier launched by submarine will be disturbed by the wave force. It will have impact on the trajectory of carrier. Based on carrier vehicle exiting water requirement the six degrees of freedom mathematical model of carrier was established. The calculation model for wave force was built based on the two dimensions wave theory. The steering sequence of carrier was designed and the process of the carrier out of water was simulated under the influence of wave force. The results show that the vehicle movement stability, the control law is reasonable and the simulation methods and results of engineering research had a certain reference value.


Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 405-413 ◽  
Author(s):  
Iman Ebrahimi ◽  
Juan A. Carretero ◽  
Roger Boudreau

SUMMARYIn this work, the 3-RPRR, a new kinematically redundant planar parallel manipulator with six-degrees-of-freedom, is presented. First, the manipulator is introduced and its inverse displacement problem discussed. Then, all types of singularities of the 3-RPRR manipulator are analysed and demonstrated. Thereafter, the dexterous workspace is geometrically obtained and compared with the non-redundant 3-PRR planar parallel manipulator. Finally, based on a geometrical measure of proximity to singular configurations and the condition number of the manipulators' Jacobian matrices, actuation schemes for the manipulators are obtained. Different actuation schemes for a given path are obtained and the quality of their actuation schemes are compared. It is shown that the proposed manipulator is capable of following a path while avoiding the singularities.


Robotica ◽  
1992 ◽  
Vol 10 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Y. Amirat ◽  
F. Artigue ◽  
J. Pontnau

SummaryThis paper presents at first a static and kinematic analysis of closed chains mechanisms which permits to deduce different possible fully parallel architectures. Then we focus on a particular parallel architecture with C5 links designed to perform precise assembly tasks. A general modeling of this C5 parallel robot is presented. Two typical assembly tasks in the automotive industry are also proposed; the first one uses the C5 links parallel robot as a left-hand device, while the second one uses it as the terminal tool of a sequential manipulator.


Author(s):  
He Huang ◽  
Erbao Dong ◽  
Min Xu ◽  
Jie Yang ◽  
Kin Huat Low

Purpose This paper aims to introduce a new design concept for robotic manipulator driven by the special two degrees of freedom (DOF) joints. Joint as a basic but essential component of the robotic manipulator is analysed emphatically. Design/methodology/approach The proposed robotic manipulator consists of several two-DOF joints and a rotary joint. Each of the two-DOF joints consists of a cylinder pairs driven by two DC motors and a universal joint (U-joint). Both kinematics of the robotic manipulator and the two-DOF joint are analysed. The influence to output ability of the joint in terms of the scale effect of the inclined plane is analysed in ADAMS simulation software. The contrast between the general and the proposed two-DOF joint is also studied. Finally, a physical prototype of the two-DOF joint is developed for experiments. Findings The kinematic analysis indicates that the joint can achieve omnidirectional deflection motion at a range of ±50° and the robotic manipulator can reach a similar workspace in comparison to the general robotic manipulator. Based on the kinematic analysis, two special motion modes are proposed to endow the two-DOF joint with better motion capabilities. The contrast simulation results between the general and the proposed two-DOF joints suggest that the proposed joint can perform better in the output ability. The experimental results verify the kinematic analysis and motion ability of the proposed two-DOF joint. Originality/value A new design concept of a robotic manipulator has been presented and verified. The complete kinematic analysis of a special two-DOF joint and a seven-DOF robotic manipulator have been resolved and verified. Compared with the general two-DOF joint, the proposed two-DOF joint can perform better in output ability.


2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Li ◽  
Jorge Angeles

The subject of this paper is twofold: the kinematics and the isotropic design of six degrees-of-freedom (DOF), three-CCC parallel-kinematics machines (PKMs). Upon proper embodiment and dimensioning, the PKMs discussed here, with all actuators mounted on the base, exhibit interesting features, not found elsewhere. One is the existence of an isotropy locus, as opposed to isolated isotropy points in the workspace, thereby guaranteeing the accuracy and the homogeneity of the motion of the moving platform (MP) along different directions within a significantly large region of their workspace. The conditions leading to such a locus are discussed in depth; several typical isotropic designs are brought to the limelight. Moreover, the kinematic analysis shows that rotation and translation of the MP are decoupled, which greatly simplifies not only the kinetostatic analysis but also, most importantly, their control. Moreover, it is shown that the singularity loci of this class of mechanism are determined only by the orientation of their MP, which also simplifies locus evaluation and eases its representation.


2005 ◽  
Vol 17 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Yukio Takeda ◽  
◽  
Kouji Kamiyama ◽  
Yoshihisa Maki ◽  
Masaru Higuchi ◽  
...  

We propose a new structure for spatial in-parallel actuated mechanisms with six degrees of freedom in which the output link’s position and orientation are decoupled. Number synthesis of the position submechanism, a partial mechanism for the position-orientation decoupled mechanism, was conducted, and fifteen mechanisms were clarified. Basic equations for kinematic analysis were derived for four of the obtained mechanisms, and procedures to analyze their forward/inverse displacement were investigated. Their workspaces and swing angles were numerically evaluated based on these equations. Experimental results using an experimental position-orientation decoupled mechanism were presented to support these theoretical results.


Cobot ◽  
2022 ◽  
Vol 1 ◽  
pp. 3
Author(s):  
Yuanhai Huang ◽  
Zhi Li ◽  
Kefan Xing ◽  
Haoqin Gong

Background: Manipulators for robots are required to have high manipulability for adaptability in different tasks. However, general methods for designing manipulators with high manipulability are deficient. Here, aiming at improving the manipulability of the six degrees-of-freedom (DOF) manipulator, a method for optimizing structure size parameters based on the dexterous workspace volume is proposed. Methods: Firstly, the kinematic analysis of the manipulator is performed. Then, the manipulability of the single working point of the manipulator is judged based on reachability in different postures. The workspace of the manipulator is discretized to obtain the volume of the overall dexterous workspace. By taking the maximum volume of the dexterous workspace as the optimization goal, Genetic Algorithm (GA) is used to optimize the structure size parameters to achieve optimal manipulability. AUBO 6-DOF manipulator is defined and analyzed as an example. Results: The optimization results indicate that the dexterous workspace of the manipulator expands in volume and its manipulability is improved. The validity of the proposed optimization method is verified by comparing the distribution of dexterous workspace of the manipulator. Conclusions: This article proposes an optimization method for the structure size parameters of a 6-DOF manipulator, which can be implemented to improving the manipulability of the manipulator.


Sign in / Sign up

Export Citation Format

Share Document