Six degrees of freedom parallel robots with C5 links

Robotica ◽  
1992 ◽  
Vol 10 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Y. Amirat ◽  
F. Artigue ◽  
J. Pontnau

SummaryThis paper presents at first a static and kinematic analysis of closed chains mechanisms which permits to deduce different possible fully parallel architectures. Then we focus on a particular parallel architecture with C5 links designed to perform precise assembly tasks. A general modeling of this C5 parallel robot is presented. Two typical assembly tasks in the automotive industry are also proposed; the first one uses the C5 links parallel robot as a left-hand device, while the second one uses it as the terminal tool of a sequential manipulator.

Author(s):  
Muhammed R. Pac ◽  
Dan O. Popa

Legged robots are more maneuverable, and can negotiate rough terrain much better than conventional locomotion using wheels. However, since the kinematic or dynamic analysis of such robots involves closed chains, it is typically more difficult to investigate the impact of design changes, such as the number, or the design of its legs, to robot performance. Most legged robots consist of 4 legs (quadrupeds) or 6 legs (hexapods). This paper discusses the kinematic analysis of an unconventional, symmetrical 5-legged robot with 2-DOF (Degrees Of Freedom) universal joints in each leg. The analysis was carried out in order to predict the mobility of the upper body platform, and investigate the number of robot actuators needed for mobility. The product of exponentials formulation with respect to the local coordinate frames is used to describe the twists of the joints. The analysis is based on the idea that the robot body platform along with the legs can be considered instantaneously as a parallel robot manipulating the ground. Hence, the analysis can be done using the Jacobian formulation of parallel robots. Simulation results confirm the mobility analysis that the robot can have at most 3-DOF for the body and that these freedoms are coupled rotations and translations in 3D space also with a dependence on the configuration of the robot.


Author(s):  
Salua Hamaza ◽  
Patrice Lambert ◽  
Marco Carricato ◽  
Just Herder

This paper explores the fundamentals of parallel robots with configurable platforms (PRCP), as well as the design and the kinematic analysis of those. The concept behind PRCP is that the rigid (non-configurable) end-effector is replaced by a closed-loop chain, the configurable platform. The use of a closed-loop chain allows the robot to interact with the environment from multiple contact points on the platform, which reflects the presence of multiple end-effectors. This results in a robot that successfully combines motion and grasping capabilities into a structure that provides an inherent high stiffness. This paper aims to introduce the QuadroG robot, a 4 degrees of freedom PRCP which finely merges planar motion together with grasping capabilities.


Author(s):  
Bin Mei ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Xuan Luo

3-PP(Pa)S robot is a six degrees of freedom (DOFs) parallel mechanism with 2-DOF active planar joint. For the design and application of the 3-PP(Pa)S robot, it is essential to investigate the motion/force transmissibility of the robot. But previous studies of the motion/force transmissibility have mainly focused on the parallel robots with 1-DOF active joints and thus cannot be directly applied to the 3-PP(Pa)S robot. In this paper, input twist subspace, transmission wrench subspace and output twist subspace are investigated to build mathematical models of the twists and wrenches corresponding to the 2-DOF active planar joint. Afterwards, based on the previous established frame of the local transmission index, some extended performance evaluation indices are defined to describe the motion/force transmissibility of the 3-PP(Pa)S robot. On this basis, the singularity and motion/force transmissibility of this mechanism are investigated. The motion/force transmissibility evaluation method is meaningful and applicable for the 3-PP(Pa)S parallel robot with 2-DOF active joints and can be further applied to other mechanisms with multi-DOF active joints.


Author(s):  
Marceau Métillon ◽  
Saman Lessanibahri ◽  
Philippe Cardou ◽  
Kévin Subrin ◽  
Stéphane Caro

Abstract Cable-Driven Parallel Robots (CDPRs) offer high payload capacities, large translational workspace and high dynamic performances. The rigid base frame of the CDPR is connected in parallel to the moving platform using cables. However, their orientation workspace is usually limited due to cable/cable and cable/moving platform collisions. This paper deals with the designing, modelling and prototyping of a hybrid robot. This robot, which is composed of a CDPR mounted in series with a Parallel Spherical Wrist (PSW), has both a large translational workspace and an unlimited orientation workspace. It should be noted that the six degrees of freedom (DOFs) motions of the moving platform of the CDPR, namely, the base of the PSW, and the three-DOFs motion of the PSW are actuated by means of eight actuators fixed to the base. As a consequence, the overall system is underactuated and its total mass and inertia in motion is reduced.


2021 ◽  
pp. 1-11 ◽  
Author(s):  
Marceau Metillon ◽  
Philippe Cardou ◽  
Kevin Subrin ◽  
Camilo Charron ◽  
Stéphane Caro

Abstract Cable-Driven Parallel Robots (CDPRs) offer high payload capacities, large translational workspace and high dynamic performances. The rigid base frame of the CDPR is connected in parallel to the moving platform using cables. However, their orientation workspace is usually limited due to cable/cable and cable/moving platform collisions. This paper deals with the design, modelling and prototyping of a hybrid robot. This robot, which is composed of a CDPR mounted in series with a Parallel Spherical Wrist (PSW), has both a large translational workspace and an unlimited orientation workspace. It should be noted that the six degrees of freedom (DOF) motions of the moving platform of the CDPR, namely, the base of the PSW, and the three-DOF motion of the PSW are actuated by means of eight actuators fixed to the base. As a consequence, the overall system is underactuated and its total mass and inertia in motion is reduced.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


Author(s):  
Ronen Ben-Horin ◽  
Moshe Shoham

Abstract The construction of a new type of a six-degrees-of-freedom parallel robot is presented in this paper. Coordinated motion of three planar motors, connected to three fixed-length links, produces a six-degrees-of-freedom motion of an output link. Its extremely simple design along with much larger work volume make this high performance-to-simplicity ratio robot very attractive.


2014 ◽  
Vol 607 ◽  
pp. 759-763
Author(s):  
Xiao Bo Liu ◽  
Xiao Dong Yuan ◽  
Xiao Feng Wei ◽  
Wei Ni

This paper deals with the design and analysis of a novel and simple two-translation and one-rotation (3 degrees of freedom, 3-dof) mechanism for alignment. Firstly, degree of freedom of the parallel robot is solved based on the theory of screw. Secondly considering the demand of motion control, we have conducted the analysis on the 3-dof parallel robot, which includes inverse displacement, forward displacement, and simulation based on SolidWorks Motion. The simulation results indicate that the novel 3-dof robot is suitable for performing the required operations.


Sign in / Sign up

Export Citation Format

Share Document