scholarly journals Heuristic compactness maximization algorithm for two-dimensional single-atom traps rearrangement

2021 ◽  
Vol 2145 (1) ◽  
pp. 012024
Author(s):  
T Mamee ◽  
W Anukool ◽  
N Thaicharoen ◽  
N Chattrapiban ◽  
P Sompet

Abstract We establish an algorithm and computational results based on heuristic rearrangement of randomly filled array toward a defect-free and compact array. In this approach, the vacancies are filled from the inner layer that is related to the distance from the center of each loading site. By rearranging the position of atoms that maximize the compactness of the system layer by layer, the algorithm is set to iterate until the compactness reaches its local maximum. The results show that by applying the algorithm, the compactness of the system converges up to ∼97% of the theoretical maximum.

2021 ◽  
Vol 23 (14) ◽  
pp. 8784-8791
Author(s):  
Qingling Meng ◽  
Ling Zhang ◽  
Jinge Wu ◽  
Shuwei Zhai ◽  
Xiamin Hao ◽  
...  

Theoretical screening of transition metal atoms anchored on monolayer C9N4 as highly stable, catalytically active and selective single-atom catalysts for nitrogen fixation.


Langmuir ◽  
2009 ◽  
Vol 25 (24) ◽  
pp. 14071-14078 ◽  
Author(s):  
Sania Mansouri ◽  
Julien Fatisson ◽  
Zhimei Miao ◽  
Yahye Merhi ◽  
Françoise M. Winnik ◽  
...  

2012 ◽  
Vol 598 ◽  
pp. 516-519
Author(s):  
Yu Qing Ding ◽  
Wen Hui Tang ◽  
Xian Wen Ran ◽  
Xin Xu

The computational analysis of plate impact experiments on dry sand utilizing the Mie- Grüneisen (MG) equation of state and the P-α compaction model were investigated in this study. A number of two dimensional axial symmetric computations were performed by using the hydrocode AUTODYN. The computational results were compared with the particle velocity on the back surface of the rear plate measured by the VISAR system and the first shock-wave arrival times detected by piezoelectric pins in the samples respectively. It was found that the P-α compaction model was more accurately reproduce the experimental data than the MG EOS.


2008 ◽  
Vol 33-37 ◽  
pp. 1025-1030
Author(s):  
Gulbahar Wahap ◽  
Tatsuya Kobori ◽  
Yoko Takakura ◽  
Norio Arai ◽  
Yoshifumi Konishi ◽  
...  

Recently, the intravascular therapy using microcoils and stents to treat aneurysms has attracted researcher’s interest. In this study, in order to evaluate the effects of the stents, a numerical simulation of two-dimensional flows has been carried out for a pipe with a model of an aneurismal sac. Using aneurismal models with different inclined angles to the pipe, inflow conditions with steady states or pulsations have been applied in the range of Reynolds number in human blood flows. First, the computational results are compared with experiments under the steady inflow condition, which has shown the reliability of the numerical simulation. Furthermore, the mechanism of flows with an aneurismal model is discussed in the case with or without a stent, and consequently the effect of the stent is clarified.


2022 ◽  
Author(s):  
Huixin Ma ◽  
Daijie Deng ◽  
Honghui Zhang ◽  
Feng Chen ◽  
Junchao Qian ◽  
...  

Nitrogen-coordinated single-atom manganese in multi-dimensional nitrogen-doped carbon electrocatalysts (Mn-NC) was successful constructed by combing two-dimensional nanosheets and one-dimensional nanofibers. The Mn-NC exhibited excellent oxygen reduction reaction catalytic activity with half-wave...


Author(s):  
Zhen Feng ◽  
Zelin Yang ◽  
Xiaowen Meng ◽  
Fachuang Li ◽  
Zhanyong Guo ◽  
...  

The development of single-atom catalysts (SACs) for electrocatalytic nitrogen reduction reaction (NRR) remains a great challenge. Using density functional theory calculations, we design a new family of two-dimensional metal-organic frameworks...


Sign in / Sign up

Export Citation Format

Share Document