scholarly journals Rapid Assembly Modeling in Computer Aided Design System

2022 ◽  
Vol 2146 (1) ◽  
pp. 012022
Author(s):  
Chenghua Hong ◽  
Han Ge ◽  
Cunzhong Fang ◽  
Xuyang Zhao ◽  
Ning Liu ◽  
...  

Abstract Rapid assembly modeling system is a tool that needs to be used in the design process. Because the three-dimensional modeling is intuitive, powerful and can be used in actual engineering, it is more and more used in manufacturing production. In the rapid development of computer-aided design technology, CAD/CAM software is the most commonly used and most widely used modeling tool. Therefore, the purpose of this article to study the rapid assembly modeling in the computer-aided design system is to improve the performance and accuracy of the assembly system and promote the high-quality production of products. This article mainly uses experimental method and case analysis method to test the assembly system designed in this article. The experimental results show that, under low temperature conditions, the relative error and absolute error of the assembly size are in a small space, which meets the actual requirements. Therefore, the system designed in this paper can be used in practice.

Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


Author(s):  
Khaled E. Ahmed

The potential applications of computer-aided design/computer-aided manufacturing (CAD/CAM) and intraoral scanning exceed the delivery of standard prosthodontic interventions. The aim of this study was to clinically present a developed assessment technique, that relies on the use of sequential intraoral scanning, three-dimensional superimposition, and 2D and 3D deviation analyses based on a standardised protocol, as an auxiliary tool in monitoring dimensional changes of residual ridge post-extraction with a follow-up period of four months.


2020 ◽  
pp. 606-612
Author(s):  
S.V. KAZUMYAN ◽  
◽  
I.A. DEGTEV ◽  
V.V. BORISOV ◽  
K.A. ERSHOV

The article represents the information that in the age of digital dentistry, virtual treatment planning is becoming an increasingly important element of dental practice. With new technological advances in computer-aided design and computer-aided manufacturing (CAD/CAM) of dental restorations, predictable interdisciplinary treatment using a reverse planning approach appears to be beneficial and feasible. It is noted that thanks to achievements in medical imaging and computer programming, 2D axial images can be processed into other reformatted representations (sagittal and coronal) and three-dimensional (3D) virtual models representing the patient’s anatomy. It is shown that telemedicine occupies a special place among modern technologies in dentistry, which is used both for remote consultation and for the successful treatment of patients. Keywords: Virtual assistants , virtual nurses, voice technologies, artificial intelligence, virtual reality, 3D printing, telemedicine.


1994 ◽  
Vol 10 (04) ◽  
pp. 217-222
Author(s):  
Kohji Honda ◽  
Noriyuki Tabushi

A VLCC (very large crude oil carrier) has approximately 1000 curved longitudinal beams, many of which have three-dimensional complicated curvatures. Due to the shortage of highly skilled workers and the need to keep costs down, production and structural designers have worked to reduce the number of such beams. In order to meet the requirements of production, the authors' company has attempted several design approaches for the longitudinal beam layout to reduce the number of beams that have complicated curvature. Recently, through the application of a computer-aided design system, which has been improved for shipbuilding based on the Calma's system, a new design method for the longitudinal beam layout has been successfully developed. A significant number of beams with a twisted configuration have been eliminated and replaced with beams of simpler, two-dimensional shapes. This paper shows the transition of these design approaches, and the application of the new design to building a VLCC.


2006 ◽  
Vol 53 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Aleksandar Todorovic ◽  
Vojkan Lazic

CAD/CAM technology (Computer Aided Design / Computer Aided Manufacturing) in the matter of fact helps in design and development of two-dimensional or three-dimensional models and their realization on numerical controlled machines. The key to direct or indirect CAD/CAM dental restorations is the measurement of dental preparation in the mouth or on the plaster die. The aim of this paper is to describe the possibilities and the way of function of different computer aided inspection (CAI) systems as a first part of CAD/CAM systems. Different researchers have presented several approaches of methods for three dimensional (3D) measurement. Today, for chairside dental treatment, only the optical method of measurement has lead to satisfactory results in practice. Laboratory CAD/CAM systems use mechanical and optical technologies for 3D measurement. Optical impression grows as a leader of CAI segment of almost every new CAD/CAM system. The most important properties of 3D scanners are: accuracy, volume and speed of measurement and ergonomy of instrument. .


Author(s):  
G Britton ◽  
T S Beng ◽  
Y Wang

This paper describes three approaches for virtual product development of plastic injection moulds. The first is characterized by the use of three-dimensional computer aided design (CAD) for product design, two-dimensional drafting for mould design and three-dimensional computer aided design/manufacture (CAD/CAM) for mould manufacture. The second is characterized by the use of three-dimensional CAD models by all three participants, but between any two participants some form of file conversion is normally required because different CAD systems are used. The first two approaches share one common feature: the models are passed serially from the product designer to the mould designer and on to the toolmaker. They represent current practice in industry. The third approach is a proposed collaborative design process. Participants can work concurrently on the same model, sharing their knowledge and experience. The process is currently being refined and will be validated later this year with a prototype system based on Unigraphics iMAN software.


2020 ◽  
Vol 45 (4) ◽  
pp. E176-E184
Author(s):  
SM Munusamy ◽  
AU Yap ◽  
HL Ching ◽  
NA Yahya

Clinical Relevance Computer-aided design/computer-aided manufacturing (CAD/CAM) composite resins are susceptible to degradation by dietary solvents. Dietary counselling is prudent when placing such CAD/CAM restorations. SUMMARY This study determined the effect of dietary solvents on the surface roughness (Ra) of direct, indirect, and computer-aided design/computer-aided manufacturing (CAD/CAM) dental composites. The materials evaluated were a direct composite (Filtek Z350 XT [FZ]), an indirect composite (Shofu Ceramage [CM]), and four CAD/CAM composites (Lava Ultimate [LU], Shofu Block HC [HC], Cerasmart [CS], and Vita Enamic [VE]). Specimens (12×14×1.5 mm) of each material were prepared, measured for baseline Ra, ranked, divided into six groups (n=12), and conditioned in the following media for 1 week at 37°C: air (control), distilled water, 0.02 N citric acid, 0.02 N lactic acid, heptane, and 50% ethanol-water solution. The composite specimens were then subjected to postconditioning Ra testing using an optical three-dimensional surface analyzer (G4e, Alicona Imaging GmbH, Raaba, Austria). Inter-medium and inter-material comparisons were performed with one-way analysis of variance and post hoc Bonferroni test at a significance level of α=0.05. Mean Ra values ranged from 0.086 ± 0.004 μm to 0.153 ± 0.005 μm for the various material/medium combinations. For all materials, conditioning in air (control) and distilled water generally resulted in significantly lower mean Ra than exposure to other dietary solvents. Conditioning in citric acid presented the roughest surfaces for FZ, CM, and CS. For LU, HC, and VE, exposure to lactic acid, heptane, and ethanol solution resulted in the highest mean Ra. Regardless of conditioning media, FZ had the highest and VE the lowest mean Ra compared with other composites. The CAD/CAM composites remained susceptible to surface degradation by dietary solvents despite their industrial polymerization.


2021 ◽  
Vol 11 ◽  
pp. 48-55
Author(s):  
Prajak Jariyapongpaiboon ◽  
Jirawan Chartpitak ◽  
Jaturong Jitsaard

Objectives: Infrazygomatic crest (IZC) surgical guides have been employed to prevent any avoidable complications during miniscrew insertion. The purpose of this study was to evaluate the accuracy of IZC miniscrew placement when using a surgical-guide developed by computer-aided design and manufacturing (CAD/CAM) techniques. Materials and Methods: Ten patients were scanned with cone-beam computed tomography for three-dimensional (3D) planning of IZC miniscrew placements. The upper arches were scanned separately, and virtual miniscrews were placed in the position planned by 3D software. The CAD/CAM surgical guides were designed and fabricated individually to enable accurate miniscrew placement. Subsequently, 20 self-drilling miniscrews were inserted at the right and left IZC areas using 5 CAD/CAM surgical guides (CS group, n = 10) and direct insertion (DI group, n = 10), respectively. Pre- and post-operative digital model images were compared, actual and planned miniscrew positions were superimposed and measured for 3D angular and distance deviations in the two groups. Comparisons between groups were made using the Kruskal–Wallis test. Results: In the CS group, the median coronal and sagittal angular deviations were 2.95 degrees (range 0.34–5.26 degrees) and 2.05 degrees (range 0.38–4.08 degrees), respectively, while the median coronal and apical deviations were 0.39 mm (range 0.24–0.51 mm) and 0.50 mm (range 0.16–0.66 mm). These deviations differed significantly from those of the DI group. Conclusion: The IZC CAD/CAM surgical guide has made it possible to control miniscrew placement with high precision.


Sign in / Sign up

Export Citation Format

Share Document