scholarly journals Molecular Dynamics Simulations of Structural Changes for a Molten Ag54Cu1 Cluster during Cooling

2022 ◽  
Vol 2148 (1) ◽  
pp. 012005
Author(s):  
Zhijing Zhang

Abstract Structural changes of an Ag54Cu1 cluster had been computationally studied by molecular dynamics approaches. Packing transition was demonstrated by analytical tools including potential energy, atomic density profiles, and shape factor as well as visually packing images. During the process of temperature decreasing, this cluster preferentially assumes icosahedral geometry. Copper atom usually has an atomic position inside a cluster. As temperature decreases, its position will change. Potential energy shows different temperature regimes in the structural transformation. Atomic density profile gives packing pattern in different region. Shape factor presents the morphology changes of this cluster.

2020 ◽  
Author(s):  
Shi Jun Ang ◽  
Wujie Wang ◽  
Daniel Schwalbe-Koda ◽  
Simon Axelrod ◽  
Rafael Gomez-Bombarelli

<div>Modeling dynamical effects in chemical reactions, such as post-transition state bifurcation, requires <i>ab initio</i> molecular dynamics simulations due to the breakdown of simpler static models like transition state theory. However, these simulations tend to be restricted to lower-accuracy electronic structure methods and scarce sampling because of their high computational cost. Here, we report the use of statistical learning to accelerate reactive molecular dynamics simulations by combining high-throughput ab initio calculations, graph-convolution interatomic potentials and active learning. This pipeline was demonstrated on an ambimodal trispericyclic reaction involving 8,8-dicyanoheptafulvene and 6,6-dimethylfulvene. With a dataset size of approximately</div><div>31,000 M062X/def2-SVP quantum mechanical calculations, the computational cost of exploring the reactive potential energy surface was reduced by an order of magnitude. Thousands of virtually costless picosecond-long reactive trajectories suggest that post-transition state bifurcation plays a minor role for the reaction in vacuum. Furthermore, a transfer-learning strategy effectively upgraded the potential energy surface to higher</div><div>levels of theory ((SMD-)M06-2X/def2-TZVPD in vacuum and three other solvents, as well as the more accurate DLPNO-DSD-PBEP86 D3BJ/def2-TZVPD) using about 10% additional calculations for each surface. Since the larger basis set and the dynamic correlation capture intramolecular non-covalent interactions more accurately, they uncover longer lifetimes for the charge-separated intermediate on the more accurate potential energy surfaces. The character of the intermediate switches from entropic to thermodynamic upon including implicit solvation effects, with lifetimes increasing with solvent polarity. Analysis of 2,000 reactive trajectories on the chloroform PES shows a qualitative agreement with the experimentally-reported periselectivity for this reaction. This overall approach is broadly applicable and opens a door to the study of dynamical effects in larger, previously-intractable reactive systems.</div>


10.29007/6kp3 ◽  
2020 ◽  
Author(s):  
Renji Mukuno ◽  
Manabu Ishimaru

The structural changes of amorphous silicon (a-Si) under compressive pressure were examined by molecular-dynamics simulations using the Tersoff interatomic potential. a-Si prepared by melt-quenching methods was pressurized up to 30 GPa under different temperatures (300K and 500K). The density of a-Si increased from 2.26 to 3.24 g/cm3 with pressure, suggesting the occurrence of the low-density to high-density amorphous phase transformation. This phase transformation occurred at the lower pressure with increasing the temperature because the activation barrier for amorphous-to-amorphous phase transformation could be exceeded by thermal energy. The coordination number increased with pressure and time, and it was saturated at different values depending on the pressure. This suggested the existence of different metastable atomic configurations in a-Si. Atomic pair-distribution functions and bond-angle distribution functions suggested that the short-range ordered structure of high-density a-Si is similar to the structure of the high-pressure phase of crystalline Si (β-tin and Imma structures).


2021 ◽  
Author(s):  
Stefanos S Nomidis ◽  
Enrico Carlon ◽  
Stephan Gruber ◽  
John F Marko

Structural Maintenance of Chromosomes (SMC) protein complexes play essential roles in genome folding and organization across all domains of life. In order to determine how the activities of these large (about 50 nm) complexes are controlled by ATP binding and hydrolysis, we have developed a molecular dynamics (MD) model that realistically accounts for thermal conformational motions of SMC and DNA. The model SMCs make use of DNA flexibility and looping, together with an ATP-induced "power stroke", to capture and transport DNA segments, so as to robustly translocate along DNA. This process is sensitive to DNA tension: at low tension (about 0.1 pN), the model performs steps of roughly 60 nm size, while, at higher tension, a distinct inchworm-like translocation mode appears, with steps that depend on SMC arm flexibility. By permanently tethering DNA to an experimentally-observed additional binding site ("safety belt"), the same model performs loop extrusion. We find that the dependence of loop extrusion on DNA tension is remarkably different when DNA tension is fixed vs when DNA end points are fixed: Loop extrusion reversal occurs above 0.5 pN for fixed tension, while loop extrusion stalling without reversal occurs at about 2 pN for fixed end points. Our model quantitatively matches recent experimental results on condensin and cohesin, and makes a number of clear predictions. Finally we investigate how specific structural changes affect the SMC function, which is testable in experiments on varied or mutant SMCs.


2021 ◽  
Author(s):  
Prithvi R. Pandey ◽  
Bartosz Różycki ◽  
Reinhard Lipowsky ◽  
Thomas R. Weikl

AbstractWe investigate the structural and orientational variability of the membrane-embedded T cell receptor (TCR) – CD3 complex in extensive atomistic molecular dynamics simulations based on the recent cryo-EM structure determined by Dong et al. (2019). We find that the TCR extracellular (EC) domain is highly variable in its orientation by attaining tilt angles relative to the membrane normal that range from 15° to 55°. The tilt angle of the TCR EC domain is both coupled to a rotation of the domain and to characteristic changes throughout the TCR – CD3 complex, in particular in the EC interactions of the Cβ FG loop of the TCR, as well as in the orientation of transmembrane helices. The concerted motions of the membrane-embedded TCR – CD3 complex revealed in our simulations provide atomistic insights for force-based models of TCR activation, which involve such structural changes in response to tilt-inducing forces on antigen-bound TCRs.


2004 ◽  
Vol 76 (1) ◽  
pp. 215-221 ◽  
Author(s):  
A. Vegiri

The origin of the dramatic increase of the reorientational and structural relaxation rates of single water molecules in clusters of size N = 16, 32, and 64 at T = 200 K, under the influence of an external, relatively weak electric field (~0.5 107 V/cm) is examined through molecular dynamics simulations. The observed effect is attributed not to any profound structural changes, but to the increase of the size of the molecular cage. The response of water to an electric field in this range shows many similarities with the dynamics of water under low pressure. By referring to simulations and experiments from the literature, we show that in both cases the observed effects are dictated by a common mechanism.


2021 ◽  
Author(s):  
Xue-Qi Lv ◽  
Xiong-Ying Li

Abstract The melting at the magnesium/aluminum (Mg/Al) interface is an essential step during the fabrications of Mg-Al structural materials and biomaterials. We carried out molecular dynamics simulations on the melting at the Mg/Al interface in a Mg-Al-Mg nanolayer via analyzing the changes of average atomic potential energy, Lindemann index, heat capacity, atomic density distribution and radial distribution function with temperature. The melting temperatures (T m) of the nanolayer and the slabs near the interface are significantly sensitive to the heating rate (v h) over the range of v h≤4.0 K/ps. The distance (d) range in which the interface affects the melting of the slabs is predicted to be (-98.2, 89.9) Å at v h→0, if the interface is put at d=0 and Mg (Al) is located at the left (right) side of the interface. The (T m) of the Mg (Al) slab just near the interface (e.g., d=4.0 Å) is predicted to be 926.8 K (926.6 K) at v h→0, with 36.9 K (37.1 K) below 963.7 K for the nanolayer. These results highlight the importance of regional research on the melting at an interface in the nanolayers consisting of two different metals.


Sign in / Sign up

Export Citation Format

Share Document