scholarly journals Multitemporal analysis with statistical models: influence of the atmospheric condition on urban concentrations of particulate matter

2022 ◽  
Vol 2159 (1) ◽  
pp. 012003
Author(s):  
L Rodríguez-Garavito ◽  
K J Romero-Corredor ◽  
C A Zafra-Mejía

Abstract This paper shows a multitemporal analysis with autoregressive integrated moving average models of the influence of atmospheric condition on concentrations of particulate matter ≤ 10 µm in Bogotá city, Colombia. Information was collected from six monitoring stations distributed throughout the city. The study period was nine years. Autoregressive component of the models suggests that urban areas with greater atmospheric instability show a lower hourly persistence of particulate matter (one hour) compared to urban areas with lower atmospheric instability (two hours). Moving average component of the models hints those urban areas with greater atmospheric instability show greater hourly variability in particulate matter concentrations (5-10 hours). The models also suggest that a high degree of air pollution decreases the temporal influence of the atmospheric condition on particulate matter concentrations; in this case, the temporal behavior of particulate matter possibly depends on the urban emission sources of this pollutant rather than on the existing atmospheric condition. This study is relevant to deepen the knowledge in relation to the following aspects of atmospheric physics: The use of statistical models for the time series analysis of atmospheric condition, and the analysis by statistical models of the influence of atmospheric condition on air pollutant concentrations.

2021 ◽  
Vol 2139 (1) ◽  
pp. 012002
Author(s):  
L A Manco-Perdomo ◽  
L A Pérez-Padilla ◽  
C A Zafra-Mejía

Abstract The objective of this paper is to show an intervention analysis with autoregressive integrated moving average models for time series of air pollutants in a Latin American megacity. The interventions considered in this study correspond to public regulations for the control of urban air quality. The study period comprised 10 years. Information from 10 monitoring stations distributed throughout the megacity was used. Modelling showed that setting maximum emission limits for different pollution sources and improving fuel were the most appropriate regulatory interventions to reduce air pollutant concentrations. Modelling results also suggested that these interventions began to be effective between the first 4 days-15 days after their publication. The models developed on a monthly timescale had a short autoregressive memory. The air pollutant concentrations at a given time were influenced by the concentrations of up to three months immediately preceding. Moving average term of the models showed fluctuations in time of the air pollutant concentrations (3 months - 14 months). Within the framework of the applications of physics for the air pollution control, this study is relevant for the following findings: the usefulness of autoregressive integrated moving average models to temporal simulate air pollutants, and for its suitable performance to detect and quantify regulatory interventions.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1073
Author(s):  
Jie Zeng ◽  
Xin Ge ◽  
Qixin Wu ◽  
Shitong Zhang

Air pollutants have been investigated in many studies, but the variations of atmospheric pollutants and their relationship with rainwater chemistry are not well studied. In the present study, the criteria atmospheric pollutants in nine monitoring stations and rainwater chemistry were analyzed in karst Guiyang city, since the time when the Chinese Ambient Air Quality Standards (CAAQS, third revision) were published. Based on the three-year daily concentration dataset of SO2, NO2, CO, PM10 and PM2.5, although most of air pollutant concentrations were within the limit of CAAQS III-Grade II standard, the significant spatial variations and relatively heavy pollution were found in downtown Guiyang. Temporally, the average concentrations of almost all air pollutants (except for CO) decreased during three years at all stations. Ratios of PM2.5/PM10 in non- and episode days reflected the different contributions of fine and coarse particles on particulate matter in Guiyang, which was influenced by the potential meteorological factors and source variations. According to the individual air quality index (IAQI), the seasonal variations of air quality level were observed, that is, IAQI values of air pollutants were higher in winter (worst air quality) and lower in summer (best air quality) due to seasonal variations in emission sources. The unique IAQI variations were found during the Chinese Spring Festival. Air pollutant concentrations are also influenced by meteorological parameters, in particular, the rainfall amount. The air pollutants are well scoured by the rainfall process and can significantly affect rainwater chemistry, such as SO42−, NO3−, Mg2+, and Ca2+, which further alters the acidification/alkalization trend of rainwater. The equivalent ratios of rainwater SO42−/NO3− and Mg2+/Ca2+ indicated the significant contribution of fixed emission sources (e.g., coal combustion) and carbonate weathering-influenced particulate matter on rainwater chemistry. These findings provide scientific support for air pollution management and rainwater chemistry-related environmental issues.


2020 ◽  
Author(s):  
Paul A. Solomon ◽  
Dena Vallano ◽  
Melissa Lunden ◽  
Brian LaFranchi ◽  
Charles L. Blanchard ◽  
...  

Abstract. Mobile platform measurements provide new opportunities for characterizing spatial variations of air pollution within urban areas, identifying emission sources, and enhancing knowledge of atmospheric processes. The Aclima, Inc. mobile measurement and data acquisition platform was used to equip Google Street View cars with research-grade instruments. On-road measurements of air quality were made between May 2016 and September 2017 at high (i.e., 1-second [s]) temporal and spatial resolution at several California locations: Los Angeles, San Francisco, and the northern San Joaquin Valley (including non-urban roads and the cities of Tracy, Stockton, Manteca, Merced, Modesto, and Turlock). The results demonstrate that the approach is effective for quantifying spatial variations of air pollutant concentrations over measurement periods as short as two weeks. Measurement accuracy and precision are evaluated using results of weekly performance checks and periodic audits conducted through the sampler inlets, which show that research instruments in stationary vehicles are capable of reliably measuring nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), methane (CH4) black carbon (BC), and particle number (PN) concentration with bias and precision ranging from


Author(s):  
Ray F. Nassar

Air pollution is a serious global issue, responsible for approximately one in every nine deaths each year, ranking it among the greatest environmental hazards to human health. It is of particular concern in urban areas, where elevated pollutant concentrations and potential sufferers converge. Over one half of the world’s population presently lives in urban areas, and the urban population ratio is expected to reach 68% by 2050. Common air pollutants include particulate matter (PM), sulphur dioxide (SO2), ground-level ozone (O3), nitrogen oxide (NOx) and carbon monoxide (CO). While elevated rates of air pollution pose serious health risks for humans, outdoor plants can help reduce the harmful effects of air pollution by filtering and purifying the air around us.In this project Common Ivy, Aster and Miniature Andromeda plants were evaluated for air pollutant mitigation. In this study we developed a vegetation barrier model with the plant located in the middle of the greenhouse box, and air pollutant was sprayed on one side of the plant. Dispersion patterns of sprayed pollutants were tested with and without vegetation barrier. Measurements of carbon dioxide (CO2), Formaldehyde (HCHO), Total Volatile Organic Compounds (TVOC), and Particulate Matter (PM2.5/PM10) were taken before spraying, then at 0 and 30 minutes after spraying, using both monitors.The results show mitigation rates (in 177 ft3 of air after 30 min): for TVOC the minimum reduction is 5 mg/m3; for HCHO, 1 mg/m3; for CO2, 2000 ppm; for PM2.5, 2000 ug/m3; and for PM10 it was 1000 ug/m3.


2006 ◽  
Vol 6 (1) ◽  
pp. 839-877 ◽  
Author(s):  
B. de Foy ◽  
J. R. Varela ◽  
L. T. Molina ◽  
M. J. Molina

Abstract. Urban areas can be large emitters of air pollutants leading to negative health effects and environmental degradation. The rate of venting of these airsheds determines the pollutant loading for given emission levels, and also determines the regional impacts of the urban plume. Mexico City has approximately 20 million people living in a high altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale meteorological model (MM5) and a particle trajectory model (FLEXPART) are used to simulate air flow within the Mexico City basin and the fate of the urban plume during the MCMA-2003 field campaign. The simulated trajectories are validated against pilot balloon and radiosonde trajectories. The residence time of air within the basin and the impacted areas are identified by episode type. Three specific cases are analysed to identify the meteorological processes involved. For most days, residence times in the basin are less than 12 h with little carry-over from day to day and little recirculation of air back into the basin. Very efficient vertical mixing leads to a vertically diluted plume which, in April, is transported predominantly towards the Gulf of Mexico. Regional accumulation was found to take place for some days however, with urban emissions sometimes staying over Mexico for more than 6 days. Knowledge of the residence times, recirculation patterns and venting mechanisms will be useful in guiding policies for improving the air quality of the MCMA.


2018 ◽  
Vol 16 (3) ◽  
pp. 425-436
Author(s):  
Aleksandra Curcic

Sustainable and affordable technologies are an important aspect of environment and energy efficiency. Environmental pollution in urban areas is one of the causes for poor air quality. Gaseous emissions from daily traffic are continuously increasing often exceeding the allowable concentration in the atmosphere. The development of self cleaning materials photocatalytic building materials-particularly when applied to facades, can contribute to providing the clean the air and to improvement of sustainability levels. They represents one of the most promising solutions for reducing air pollutant concentrations in urban areas, proving to be really effective and showing a real eco-sustainable value. The paper explains the mechanism of self-cleaning of fa?ades, their types in architectural design and the importance of their application.


2006 ◽  
Vol 6 (8) ◽  
pp. 2321-2335 ◽  
Author(s):  
B. de Foy ◽  
J. R. Varela ◽  
L. T. Molina ◽  
M. J. Molina

Abstract. Urban areas can be large emitters of air pollutants leading to negative health effects and environmental degradation. The rate of venting of these airsheds determines the pollutant loading for given emission levels, and also determines the regional impacts of the urban plume. Mexico City has approximately 20 million people living in a high altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale meteorological model (MM5) and a particle trajectory model (FLEXPART) are used to simulate air flow within the Mexico City basin and the fate of the urban plume during the MCMA-2003 field campaign. The simulated trajectories are validated against pilot balloon and radiosonde trajectories. The residence time of air within the basin and the impacted areas are identified by episode type. Three specific cases are analysed to identify the meteorological processes involved. For most days, residence times in the basin are less than 12 h with little carry-over from day to day and little recirculation of air back into the basin. Very efficient vertical mixing leads to a vertically diluted plume which, in April, is transported predominantly towards the Gulf of Mexico. Regional accumulation was found to take place for some days however, with urban emissions sometimes staying over Mexico for more than 6 days. Knowledge of the residence times, recirculation patterns and venting mechanisms will be useful in guiding policies for improving the air quality of the MCMA.


2021 ◽  
Author(s):  
Kun Zhang ◽  
Zhiqiang Liu ◽  
Xiaojuan Zhang ◽  
Qing Li ◽  
Andrew Jensen ◽  
...  

Abstract. The outbreak of COVID-19 promoted strict restrictions to human activities in China, which led to dramatic decrease in most air pollutant concentrations (e.g., PM2.5, PM10, NOx, SO2, and CO). However, abnormal increase of ozone (O3) concentrations was found during the lockdown period in most urban areas of China. In this study, we conducted a field measurement targeting ozone and its key precursors by utilizing a novel proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) in Changzhou, which is representative for the Yangtze River Delta (YRD) city cluster of China. We further applied the integrated methodology including machine learning, observation-based model (OBM), and sensitivity analysis to get insights into the reasons causing the abnormal increase of ozone. Major findings include: (1) By deweathered calculation, we found changes in precursor emissions contributed 5.1 ppbv to the observed O3 during the Full-lockdown period, while meteorological conditions only contributed 0.5 ppbv to the O3 changes. (2) By using an OBM model, we found that although significant reduction of O3 precursors was observed during Full-lockdown period, the photochemical formation of O3 was stronger than that during the Pre-lockdown period. (3) The NOx / VOCs ratio dropped dramatically from 1.84 during Pre-lockdown to 0.79 in Full-lockdown period, which switched O3 formation from VOCs-limited regime to the conjunction of NOx- and VOC-limited regime. Additionally, the decrease in NOx / VOCs ratio during Full-lockdown period was supposed to increase the MeanO3 by 2.4 ppbv. Results of this study investigate insights into the relationship between O3 and its precursors in urban area, demonstrating reasons causing the abnormal increase of O3 in most urban areas of China during the COVID-19 lock-down period. This study also underlines the necessity of controlling anthropogenic OVOCs, alkenes, and aromatics in the sustained campaign of reducing O3 pollution in China.


Sign in / Sign up

Export Citation Format

Share Document