scholarly journals A Proposed Exploratory Study of Object Detectors to Learn the Influence of Datasets on Model Performance

2022 ◽  
Vol 2161 (1) ◽  
pp. 012076
Author(s):  
Vidya Kamath ◽  
A. Renuka

Abstract The quality of the images used to train the models in the field of object detection using deep learning models is critical in determining the model’s quality. However, there are very few methods for exploring these images in datasets to see what aspects in these images have a significant impact on the model’s performance. This could be one of the reasons why the models don’t match human perceptions. There is a need for more study that can suggest unique methodologies to address the topic at hand because the existing literature overlooks this line of thought. As a result, this paper provides a methodology based on exploratory sequential design, which may be used to identify several aspects of images in the dataset that influence model performance.

2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2611
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Christopher Lawson ◽  
Paul Meek ◽  
Paul Kwan

Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.


Author(s):  
Noé Sturm ◽  
Jiangming Sun ◽  
Yves Vandriessche ◽  
Andreas Mayr ◽  
Günter Klambauer ◽  
...  

<div>This article describes an application of high-throughput fingerprints (HTSFP) built upon industrial data accumulated over the years. </div><div>The fingerprint was used to build machine learning models (multi-task deep learning + SVM) for compound activity predictions towards a panel of 131 targets. </div><div>Quality of the predictions and the scaffold hopping potential of the HTSFP were systematically compared to traditional structural descriptors ECFP. </div><div><br></div>


2021 ◽  
Vol 23 (06) ◽  
pp. 47-57
Author(s):  
Aditya Kulkarni ◽  
◽  
Manali Munot ◽  
Sai Salunkhe ◽  
Shubham Mhaske ◽  
...  

With the development in technologies right from serial to parallel computing, GPU, AI, and deep learning models a series of tools to process complex images have been developed. The main focus of this research is to compare various algorithms(pre-trained models) and their contributions to process complex images in terms of performance, accuracy, time, and their limitations. The pre-trained models we are using are CNN, R-CNN, R-FCN, and YOLO. These models are python language-based and use libraries like TensorFlow, OpenCV, and free image databases (Microsoft COCO and PAS-CAL VOC 2007/2012). These not only aim at object detection but also on building bounding boxes around appropriate locations. Thus, by this review, we get a better vision of these models and their performance and a good idea of which models are ideal for various situations.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


2020 ◽  
Vol 10 (19) ◽  
pp. 6866
Author(s):  
Arnauld Nzegha Fountsop ◽  
Jean Louis Ebongue Kedieng Fendji ◽  
Marcellin Atemkeng

Deep learning has been successfully showing promising results in plant disease detection, fruit counting, yield estimation, and gaining an increasing interest in agriculture. Deep learning models are generally based on several millions of parameters that generate exceptionally large weight matrices. The latter requires large memory and computational power for training, testing, and deploying. Unfortunately, these requirements make it difficult to deploy on low-cost devices with limited resources that are present at the fieldwork. In addition, the lack or the bad quality of connectivity in farms does not allow remote computation. An approach that has been used to save memory and speed up the processing is to compress the models. In this work, we tackle the challenges related to the resource limitation by compressing some state-of-the-art models very often used in image classification. For this we apply model pruning and quantization to LeNet5, VGG16, and AlexNet. Original and compressed models were applied to the benchmark of plant seedling classification (V2 Plant Seedlings Dataset) and Flavia database. Results reveal that it is possible to compress the size of these models by a factor of 38 and to reduce the FLOPs of VGG16 by a factor of 99 without considerable loss of accuracy.


2020 ◽  
Vol 17 (8) ◽  
pp. 3478-3483
Author(s):  
V. Sravan Chowdary ◽  
G. Penchala Sai Teja ◽  
D. Mounesh ◽  
G. Manideep ◽  
C. T. Manimegalai

Road injuries are a big drawback in society for a few time currently. Ignoring sign boards while moving on roads has significantly become a major cause for road accidents. Thus we came up with an approach to face this issue by detecting the sign board and recognition of sign board. At this moment there are several deep learning models for object detection using totally different algorithms like RCNN, faster RCNN, SPP-net, etc. We prefer to use Yolo-3, which improves the speed and precision of object detection. This algorithm will increase the accuracy by utilizing residual units, skip connections and up-sampling. This algorithm uses a framework named Dark-net. This framework is intended specifically to create the neural network for training the Yolo algorithm. To thoroughly detect the sign board, we used this algorithm.


2020 ◽  
Author(s):  
Haiming Tang ◽  
Nanfei Sun ◽  
Steven Shen

Artificial intelligence (AI) has an emerging progress in diagnostic pathology. A large number of studies of applying deep learning models to histopathological images have been published in recent years. While many studies claim high accuracies, they may fall into the pitfalls of overfitting and lack of generalization due to the high variability of the histopathological images. We use the example of Osteosarcoma to illustrate the pitfalls and how the addition of model input variability can help improve model performance. We use the publicly available osteosarcoma dataset to retrain a previously published classification model for osteosarcoma. We partition the same set of images into the training and testing datasets differently than the original study: the test dataset consists of images from one patient while the training dataset consists images of all other patients. The performance of the model on the test set using the new partition schema declines dramatically, indicating a lack of model generalization and overfitting.We also show the influence of training data variability on model performance by collecting a minimal dataset of 10 osteosarcoma subtypes as well as benign tissues and benign bone tumors of differentiation. We show the additions of more and more subtypes into the training data step by step under the same model schema yield a series of coherent models with increasing performances. In conclusion, we bring forward data preprocessing and collection tactics for histopathological images of high variability to avoid the pitfalls of overfitting and build deep learning models of higher generalization abilities.


Sign in / Sign up

Export Citation Format

Share Document