scholarly journals 3d gravity and quantum deformations: a Drinfel'd double approach

2012 ◽  
Vol 360 ◽  
pp. 012010
Author(s):  
A Ballesteros ◽  
F J Herranz ◽  
C Meusburger
Author(s):  
Laian de Moura Silva ◽  
Marcos Alberto Rodrigues Vasconcelos ◽  
Vinamra Agrawal ◽  
Alvaro Penteado Crósta ◽  
Emilson Pereira Leite

2021 ◽  
Vol 1918 (2) ◽  
pp. 022033
Author(s):  
Supriyadi ◽  
E Wijanarko ◽  
Khumaedi
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1309
Author(s):  
Jerzy Lukierski

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed D=4 quantum inhomogeneous conformal Hopf algebras Uθ(su(2,2)⋉T4) and Uθ¯(su(2,2)⋉T¯4), where T4 describes complex twistor coordinates and T¯4 the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of D=4 Heisenberg-conformal algebra (HCA) su(2,2)⋉Hℏ4,4 (Hℏ4,4=T¯4⋉ℏT4 is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length λp, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in Hℏ4,4. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra Uθ(su(2,2)⋉T4).


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Viraj Meruliya ◽  
Sunil Mukhi ◽  
Palash Singh

Abstract We investigate the Poincaré series approach to computing 3d gravity partition functions dual to Rational CFT. For a single genus-1 boundary, we show that for certain infinite sets of levels, the SU(2)k WZW models provide unitary examples for which the Poincaré series is a positive linear combination of two modular-invariant partition functions. This supports the interpretation that the bulk gravity theory (a topological Chern-Simons theory in this case) is dual to an average of distinct CFT’s sharing the same Kac-Moody algebra. We compute the weights of this average for all seed primaries and all relevant values of k. We then study other WZW models, notably SU(N)1 and SU(3)k, and find that each class presents rather different features. Finally we consider multiple genus-1 boundaries, where we find a class of seed functions for the Poincaré sum that reproduces both disconnected and connected contributions — the latter corresponding to analogues of 3-manifold “wormholes” — such that the expected average is correctly reproduced.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544015 ◽  
Author(s):  
Eric Bergshoeff ◽  
Wout Merbis ◽  
Alasdair J. Routh ◽  
Paul K. Townsend

Consistency of Einstein’s gravitational field equation [Formula: see text] imposes a “conservation condition” on the [Formula: see text]-tensor that is satisfied by (i) matter stress tensors, as a consequence of the matter equations of motion and (ii) identically by certain other tensors, such as the metric tensor. However, there is a third way, overlooked until now because it implies a “nongeometrical” action: one not constructed from the metric and its derivatives alone. The new possibility is exemplified by the 3D “minimal massive gravity” model, which resolves the “bulk versus boundary” unitarity problem of topologically massive gravity with Anti-de Sitter asymptotics. Although all known examples of the third way are in three spacetime dimensions, the idea is general and could, in principle, apply to higher dimensional theories.


2001 ◽  
Vol 49 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Jörg Ebbing ◽  
Peter Janle ◽  
Jannis Koulouris ◽  
Bernd Milkereit

Sign in / Sign up

Export Citation Format

Share Document