scholarly journals New Energy Sources: in-situ Characterisation of Fuel Cell and Supercapacitor Components. Complementary Studies using Transmission, Fluorescence and Photoelectron Microscopy and Imaging

2013 ◽  
Vol 463 ◽  
pp. 012018 ◽  
Author(s):  
B Bozzini ◽  
M Amati ◽  
A Gianoncelli ◽  
L Gregoratti ◽  
B Kaulich ◽  
...  
2014 ◽  
Vol 556-562 ◽  
pp. 1533-1536
Author(s):  
Jia Zhou ◽  
Xiao Long Tan ◽  
Wen Bin Wang

Inverter technology as the key part of using new energy technology, can be very effective to new energy sources such as solar, battery and fuel cell energy conversion of ac electrical energy transform into ac power, and can be connected to the grid. Therefore, the inverter technology has an extremely important statue in modern society.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3193
Author(s):  
Ana L. Santos ◽  
Maria-João Cebola ◽  
Diogo M. F. Santos

Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide, researchers and companies are continuously working on this matter, taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content, but a somewhat elusive one for being a gas with low molecular weight. This review examines the current electrolysis processes for obtaining hydrogen, with an emphasis on alkaline water electrolysis. This process is far from being new, but research shows that there is still plenty of room for improvement. The efficiency of an electrolyzer mainly relates to the overpotential and resistances in the cell. This work shows that the path to better electrolyzer efficiency is through the optimization of the cell components and operating conditions. Following a brief introduction to the thermodynamics and kinetics of water electrolysis, the most recent developments on several parameters (e.g., electrocatalysts, electrolyte composition, separator, interelectrode distance) are highlighted.


1981 ◽  
Vol 89 (5) ◽  
pp. 891-913 ◽  
Author(s):  
William J. Baumol ◽  
Edward N. Wolff
Keyword(s):  

2017 ◽  
Vol 5 (8) ◽  
pp. 4003-4010 ◽  
Author(s):  
Jiangju Si ◽  
Haining Wang ◽  
Shanfu Lu ◽  
Xin Xu ◽  
Sikan Peng ◽  
...  

By modulating the amphiphilic architectures, 3D well-connected nano-channels are constructed and a trade-off between conductivity and stability in AEMs is achieved.


Sensors ◽  
2017 ◽  
Vol 17 (11) ◽  
pp. 2461 ◽  
Author(s):  
Li-Chun Wu ◽  
Teh-Hua Tsai ◽  
Man-Hai Liu ◽  
Jui-Ling Kuo ◽  
Yung-Chu Chang ◽  
...  

2017 ◽  
Vol 50 (7-8) ◽  
pp. 159-168 ◽  
Author(s):  
Yavuz Bahadır Koca ◽  
Yüksel Oğuz ◽  
Ahmet Yönetken

In this proposal, microcontroller-based energy flow control was designed in order to effectively and efficiently enable the use of energy sources in a hybrid energy generation system including wind, solar, and hydrogen energy. It was assumed that the hybrid energy generation system is dynamic during the design of the microcontroller-based energy flow control. A wind–solar energy generation system was determined as the base load power plant. Depending on the demand, the battery group and fuel cell were activated effectively. If an energy surplus occurred, it was stored in battery groups and transformed into hydrogen energy via a hydrogen generator simultaneously. In addition to providing energy sustainability, a constant active status of the energy storage group was prevented and the physical life of the group was prolonged by means of the microcontroller-based control system. If consumer demand could not be met by the main energy sources including wind and solar energy, the battery groups and fuel cell were activated and provided the energy sustainability. After a certain level of charge was reached in the battery group, it was deactivated via the control system in order to prevent unnecessary use of energy. By means of the microcontroller-based control system, the usage of energy generated with the hybrid energy generation system was analysed according to its efficiency.


2018 ◽  
Vol 24 (S2) ◽  
pp. 442-443 ◽  
Author(s):  
Kotaro Higashi ◽  
Tomohiro Sakata ◽  
Oki Sekizawa ◽  
Nozomu Ishiguro ◽  
Gabor Samjeske ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document