scholarly journals Thermal-hydraulics of internally heated molten salts and application to the Molten Salt Fast Reactor

2014 ◽  
Vol 501 ◽  
pp. 012030 ◽  
Author(s):  
Carlo Fiorina ◽  
Antonio Cammi ◽  
Lelio Luzzi ◽  
Konstantin Mikityuk ◽  
Hisashi Ninokata ◽  
...  
2020 ◽  
Vol 6 ◽  
pp. 5 ◽  
Author(s):  
Michel Allibert ◽  
Elsa Merle ◽  
Sylvie Delpech ◽  
Delphine Gerardin ◽  
Daniel Heuer ◽  
...  

The molten salt reactor designs, where fissile and fertile materials are dissolved in molten salts, under consideration in the framework of the Generation IV International Forum, present some unusual characteristics in terms of design, operation, safety and also proliferation resistance issues. This paper has the main objective of presenting some proliferation challenges for the reference version of the Molten Salt Fast Reactor (MSFR), a large power reactor based on the thorium fuel cycle. Preliminary studies of proliferation resistance are presented here, dedicated to the threat of nuclear material diversion in the MSFR, considering both the reactor system itself and the processing units located onsite.


2020 ◽  
Vol 12 (24) ◽  
pp. 10497
Author(s):  
Andrea Di Ronco ◽  
Francesca Giacobbo ◽  
Guglielmo Lomonaco ◽  
Stefano Lorenzi ◽  
Xiang Wang ◽  
...  

The unique design features of the molten salt fast reactor (MSFR) should enable higher coolant temperatures than in conventional water reactors, with a significant improvement in the achievable thermodynamic performance. The use of a molten salt as both fuel and coolant, however, poses several advanced heat transfer challenges, such as the design of innovative heat exchangers and energy conversion systems. In this work, we address a preliminary but quantitative analysis of the energy conversion system for the MSFR, based on reference design data from the SAMOFAR H2020-EURATOM project. We consider three main technologies, i.e., the supercritical steam cycle, the closed helium cycle and the helium/steam combined cycle. Preliminary design results are presented for each technology, based on a simplified modelling approach. The considered cycles show promising efficiency improvements, with the best performance being proven by the supercritical steam cycle. The analysis also highlights the critical issue related to the risk of freezing of the molten salts within the secondary heat exchangers, due to the low inlet temperatures of the working fluids. Results show potential incompatibility between the freezing point of molten salts and the temperatures typical of steam cycles, while helium cycles offer the best chances of freezing avoidance. The combined cycle promises intermediate performance in terms of thermodynamic efficiency and thermal compatibility with molten salts comparable with closed helium cycles.


2017 ◽  
Vol 58 ◽  
pp. 98-117 ◽  
Author(s):  
Pablo R. Rubiolo ◽  
Mauricio Tano Retamales ◽  
Véronique Ghetta ◽  
Julien Giraud

Author(s):  
J. Fradera ◽  
P. Alberto ◽  
G. Moya ◽  
A. Bernad ◽  
A. Fernández

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


2021 ◽  
Vol 140 ◽  
pp. 103909
Author(s):  
Fahad Alsayyari ◽  
Marco Tiberga ◽  
Zoltán Perkó ◽  
Jan Leen Kloosterman ◽  
Danny Lathouwers

CORROSION ◽  
2001 ◽  
Vol 57 (6) ◽  
pp. 489-496 ◽  
Author(s):  
M. Amaya ◽  
J. Porcayo-Calderon ◽  
L. Martinez

Abstract The performance of Fe-Si coatings and an iron aluminide (FeAl) intermetallic alloy (FeAl40at%+0.1at%B+10vol%Al2O3) in molten salts containing vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4) is reported. Corrosion and fouling by ash deposits containing V2O5 and Na2SO4 are typical corrosion problems in fuel oil-fired electric power units. High-temperature corrosion tests were performed using both electrochemical polarization and immersion techniques. The temperature interval of this study was 600°C to 900°C, and the molten salts were 80wt%V2O5-20wt%Na2SO4. Curves of corrosion current density vs temperature obtained by the potentiodynamic studies are reported, as well as the weight loss vs temperature curves from molten salt immersion tests. Both Fe-Si coatings and FeAl40at%+0.1at%B+10vol%Al2O3 showed good behavior against molten salt corrosion. The final results show the potential of these coatings and alloys to solve the high-temperature corrosion in fuel oil-fired electric power units.


Sign in / Sign up

Export Citation Format

Share Document