scholarly journals Numerical simulation of experiments on the high-speed impact of metal plates

2015 ◽  
Vol 653 ◽  
pp. 012044
Author(s):  
M V Lekanov ◽  
A E Mayer
2019 ◽  
Vol 11 (5) ◽  
pp. 723-736
Author(s):  
Radek Doubrava ◽  
Martin Oberthor ◽  
Petr Bělský ◽  
Jan Raška

Purpose The purpose of this paper is to describe the approach for the design of a jet engine composite air inlet for a new generation of jet trainer aircraft from the perspective of airworthiness requirements regarding high-speed impact resistance. Design/methodology/approach Validated numerical simulation was applied to flat test panels. The final design was optimised and verified by validated numerical simulation and verified by testing on a full-scale demonstrator. High-speed camera measurement and non-destructive testing (NDT) results were used for the verification of the numerical models. Findings The test results of flat test panels confirmed the high durability of the composite structure during inclined high-speed impact with a near-real jet inlet load boundary condition. Research limitations/implications Owing to the sensitivity of the composite material on technology production, the results are limited by the material used and the production technology. Practical implications The application of flat test panels for the verification and tuning of numerical models allows optimised final design of the air inlet and reduces the risk of structural non-compliance during verification tests. Originality/value Numerical models were verified for simulation of the real composite structure based on high-speed camera results and NDT inspection after impact. The proposed numerical model was simplified for application in a real complex design and reduced calculation time.


2016 ◽  
Vol 8 (5) ◽  
pp. 497-505 ◽  
Author(s):  
O. M. Belotserkovsky ◽  
S. V. Fortova ◽  
O. V. Troshkin ◽  
A. P. Pronina ◽  
I. V. Eriklintsev ◽  
...  

2020 ◽  
Vol 303 ◽  
pp. 1-7
Author(s):  
E.N. Kramshonkov ◽  
A.V. Krainov ◽  
Evgeny N. Pashkov

The paper discusses the results of the numerical simulation of high-speed impact effect of compact projectiles made of steel and tungsten alloy with steel obstacles of equal mass. The obstacles have different initial porosity of the material. Conducted the final evaluation of the penetration speed of the projectile depending on the porosity of the obstacle and the initial speed of the shock interaction. The initial impact velocity range from 1 to 16 [km/s]. The destruction, melting and evaporation of the interacting bodies are taken into account. The analysis of porosity influence evaluation of obstacles material revealed that the protective advantage of porous obstacles disclose at the higher impact velocities, greater than 1.5 [km/s] for steel strikers and 2 [km/s] for projectiles of tungsten alloy. The more impact velocity the more protective effect of porous obstacles.


2015 ◽  
Vol 25 (2) ◽  
pp. 559-570
Author(s):  
Wei-gui ZHANG ◽  
Liang-ju HE ◽  
Pei-jie LI ◽  
Yi-cong YE ◽  
Xue FENG ◽  
...  

2018 ◽  
Vol 32 (10) ◽  
pp. 4629-4636
Author(s):  
Kyungsun Chung ◽  
Hyoungjoon Kwon ◽  
Jung Su Park ◽  
Soonho Song

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1233
Author(s):  
Petr Chuprov ◽  
Pavel Utkin ◽  
Svetlana Fortova

The process of wave formation at the contact boundary of colliding metal plates is a fundamental basis of explosive welding technology. In this case, the metals are in a pseudo-liquid state at the initial stages of the process, and from a mathematical point of view, a wave formation process can be described by compressible multiphase models. The work is devoted to the development of a three-fluid mathematical model based on the Baer–Nunziato system of equations and a corresponding numerical algorithm based on the HLL and HLLC methods, stiff pressure, and velocity relaxation procedures for simulation of the high-speed impact of metal plates in a one-dimensional statement. The problem of collision of a lead plate at a speed of 500 m/s with a resting steel plate was simulated using the developed model and algorithm. The problem statement corresponded to full-scale experiments, with lead, steel, and ambient air as three phases. The arrival times of shock waves at the free boundaries of the plates and rarefaction waves at the contact boundary of the plates, as well as the acceleration of the contact boundary after the passage of rarefaction waves through it, were estimated. For the case of a 3-mm-thick steel plate and a 2-mm-thick lead plate, the simulated time of the rarefaction wave arrival at the contact boundary constituted 1.05 μs, and it was in good agreement with the experimental value 1.1 μs. The developed numerical approach can be extended to the multidimensional case for modeling the instability of the contact boundary and wave formation in the oblique collision of plates in the Eulerian formalism.


2018 ◽  
Vol 927 ◽  
pp. 48-54 ◽  
Author(s):  
E.N. Kramshonkov ◽  
A.V. Krainov ◽  
E.N. Pashkov

The paper discusses the results of the numerical simulation of high-speed impact effect of compact projectiles made of steel and tungsten alloy with steel obstacles of equal mass. The obstacles have different initial porosity of the material. Conducted the final evaluation of the penetration speed of the projectile depending on the porosity of the obstacle and the initial speed of the shock interaction. The initial impact velocity range from 1 to 16 [km/s]. The destruction, melting and evaporation of the interacting bodies are taken into account. The analysis of porosity influence evaluation of obstacles material revealed that the protective advantage of porous obstacles disclose at the higher impact velocities, greater than 1.5 [km/s] for steel strikers and 2 [km/s] for projectiles of tungsten alloy. The more impact velocity the more protective effect of porous obstacles.


Sign in / Sign up

Export Citation Format

Share Document