scholarly journals Why must a solar forcing be larger than a CO 2 forcing to cause the same global mean surface temperature change?

2016 ◽  
Vol 11 (4) ◽  
pp. 044013 ◽  
Author(s):  
Angshuman Modak ◽  
Govindasamy Bala ◽  
Long Cao ◽  
Ken Caldeira
2015 ◽  
Vol 28 (4) ◽  
pp. 1630-1648 ◽  
Author(s):  
Timothy Andrews ◽  
Jonathan M. Gregory ◽  
Mark J. Webb

Abstract Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of the Coupled Model Intercomparison Project (CMIP5) atmosphere–ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined, the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective climate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics (30°N–30°S). An important region involved is the tropical Pacific, where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea surface temperatures and sea ice prescribed from its AOGCM counterpart, each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. It is also demonstrated that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but nonzero change in net radiation at the top of the atmosphere (~−0.5 W m−2 in HadCM3).


2019 ◽  
Vol 32 (6) ◽  
pp. 1875-1893 ◽  
Author(s):  
Qing Yue ◽  
Brian H. Kahn ◽  
Eric J. Fetzer ◽  
Sun Wong ◽  
Xianglei Huang ◽  
...  

AbstractObservations from multiple sensors on the NASA Aqua satellite are used to estimate the temporal and spatial variability of short-term cloud responses (CR) and cloud feedbacks λ for different cloud types, with respect to the interannual variability within the A-Train era (July 2002–June 2017). Short-term cloud feedbacks by cloud type are investigated both globally and locally by three different definitions in the literature: 1) the global-mean cloud feedback parameter λGG from regressing the global-mean cloud-induced TOA radiation anomaly ΔRG with the global-mean surface temperature change ΔTGS; 2) the local feedback parameter λLL from regressing the local ΔR with the local surface temperature change ΔTS; and 3) the local feedback parameter λGL from regressing global ΔRG with local ΔTS. Observations show significant temporal variability in the magnitudes and spatial patterns in λGG and λGL, whereas λLL remains essentially time invariant for different cloud types. The global-mean net λGG exhibits a gradual transition from negative to positive in the A-Train era due to a less negative λGG from low clouds and an increased positive λGG from high clouds over the warm pool region associated with the 2015/16 strong El Niño event. Strong temporal variability in λGL is intrinsically linked to its dependence on global ΔRG, and the scaling of λGL with surface temperature change patterns to obtain global feedback λGG does not hold. Despite the shortness of the A-Train record, statistically robust signals can be obtained for different cloud types and regions of interest.


2015 ◽  
Vol 28 (17) ◽  
pp. 6608-6625 ◽  
Author(s):  
Leon D. Rotstayn ◽  
Mark A. Collier ◽  
Drew T. Shindell ◽  
Olivier Boucher

Abstract Linear regression is used to examine the relationship between simulated changes in historical global-mean surface temperature (GMST) and global-mean aerosol effective radiative forcing (ERF) in 14 climate models from CMIP5. The models have global-mean aerosol ERF that ranges from −0.35 to −1.60 W m−2 for 2000 relative to 1850. It is shown that aerosol ERF is the dominant factor that determines intermodel variations in simulated GMST change: correlations between aerosol ERF and simulated changes in GMST exceed 0.9 for linear trends in GMST over all periods that begin between 1860 and 1950 and end between 1995 and 2005. Comparison of modeled and observed GMST trends for these time periods gives an inferred global-mean aerosol ERF of −0.92 W m−2. On average, transient climate sensitivity is roughly 40% larger with respect to historical forcing from aerosols than well-mixed greenhouse gases. This enhanced sensitivity explains the dominant effect of aerosol forcing on simulated changes in GMST: it is estimated that 85% of the intermodel variance of simulated GMST change is explained by variations in aerosol ERF, but without the enhanced sensitivity less than half would be explained. Physically, the enhanced sensitivity is caused by a combination of 1) the larger concentration of aerosol forcing in the midlatitudes of the Northern Hemisphere, where positive feedbacks are stronger and transient warming is faster than in the Southern Hemisphere, and 2) the time evolution of aerosol forcing, which levels out earlier than forcing from well-mixed greenhouse gases.


2000 ◽  
Vol 105 (D10) ◽  
pp. 12517-12517 ◽  
Author(s):  
J. Hansen ◽  
R. Ruedy ◽  
J. Glascoe ◽  
M. Sato

1999 ◽  
Vol 104 (D24) ◽  
pp. 30997-31022 ◽  
Author(s):  
J. Hansen ◽  
R. Ruedy ◽  
J. Glascoe ◽  
M. Sato

Sign in / Sign up

Export Citation Format

Share Document