scholarly journals Similar patterns of tropical precipitation and circulation changes under solar and greenhouse gas forcing

Author(s):  
Stergios Misios ◽  
Matthew Kasoar ◽  
Elliott Kasoar ◽  
Lesley Gray ◽  
Joanna D Haigh ◽  
...  
2021 ◽  
Author(s):  
Liang Guo ◽  
Laura J. Wilcox ◽  
Massimo Bollasina ◽  
Steven T. Turnock ◽  
Marianne T. Lund ◽  
...  

Abstract. Despite local emission reductions, severe haze events remain a serious issue in Beijing. Previous studies have suggested that both greenhouse gas increases and aerosol decreases are likely to increase the frequency of weather patterns conducive to haze events. However, the combined effect of atmospheric circulation changes and aerosol and precursor emission changes on Beijing haze remains unclear. We use the Shared Socioeconomic Pathways (SSPs) to explore the effects of aerosol and greenhouse gas emission changes on both haze weather and Beijing haze itself. We confirm that the occurrence of haze weather patterns is likely to increase in future under all SSPs, and show that even though aerosol reductions play a small role, greenhouse gas increases are the main driver, especially during the second half of the 21st century. However, the severity of the haze events decreases on decadal timescales by as much as 70 % by 2100. The main influence on the haze itself is the reductions in local aerosol emissions, which outweigh the effects of changes in atmospheric circulation patterns. This demonstrates that aerosol reductions are beneficial, despite their influence on the circulation.


Nature ◽  
2008 ◽  
Vol 456 (7220) ◽  
pp. 373-376 ◽  
Author(s):  
Andreas Schmittner ◽  
Eric D. Galbraith

2018 ◽  
Vol 52 (7-8) ◽  
pp. 4127-4142 ◽  
Author(s):  
Jung Choi ◽  
Seok-Woo Son ◽  
Rokjin J. Park

2021 ◽  
Vol 21 (19) ◽  
pp. 15299-15308
Author(s):  
Liang Guo ◽  
Laura J. Wilcox ◽  
Massimo Bollasina ◽  
Steven T. Turnock ◽  
Marianne T. Lund ◽  
...  

Abstract. Despite local emission reductions, severe haze events remain a serious issue in Beijing. Previous studies have suggested that both greenhouse gas increases and aerosol decreases are likely to increase the frequency of weather patterns conducive to haze events. However, the combined effect of atmospheric circulation changes and aerosol and precursor emission changes on Beijing haze remains unclear. We use the Shared Socioeconomic Pathways (SSPs) to explore the effects of aerosol and greenhouse gas emission changes on both haze weather and Beijing haze itself. We confirm that the occurrence of haze weather patterns is likely to increase in future under all SSPs and show that even though aerosol reductions play a small role, greenhouse gas increases are the main driver, especially during the second half of the 21st century. However, the severity of the haze events decreases on decadal timescales by as much as 70 % by 2100. The main influence on the haze itself is the reductions in local aerosol emissions, which outweigh the effects of changes in atmospheric circulation patterns. This demonstrates that aerosol reductions are beneficial, despite their influence on the circulation.


2020 ◽  
Author(s):  
Bo-Reum Han ◽  
Jung Choi ◽  
Seok-Woo Son

<p> The impacts of stratospheric ozone and greenhouse gas changes on the Southern Hemisphere (SH) climate are re-visited by examining the single forcing experiments from the Chemistry-Climate Model Initiative (CCMI) project. In particular, the fixed ozone-depleting substance (ODS) runs and the fixed greenhouse gas (GHG) concentration runs are directly compared with the reference runs for both the past and future. Consistent with the previous studies, the SH-summer general circulation changes, such as changes in the jet location, Hadley cell edge, and Southern Annular Mode (SAM), show the opposite trends from the past to the future in response to the Antarctic ozone depletion and recovery. The GHG-induced circulation changes largely enhance the ozone-induced circulation changes in the past, but partly cancel them in the future. The ozone recovery-related tropospheric circulation return dates are also estimated in this study. We will further discuss the inter-model diversity among the CCMI models.</p>


Nature ◽  
2008 ◽  
Author(s):  
Quirin Schiermeier
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document