scholarly journals Gauge transformations and symmetries of integrable systems

2007 ◽  
Vol 40 (40) ◽  
pp. 12227-12241 ◽  
Author(s):  
Takeshi Fukuyama ◽  
Kiyoshi Kamimura ◽  
Saša Krešić-Jurić ◽  
Stjepan Meljanac
2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Irfan Mahmood ◽  
Muhammad Waseem

In this article, we present Darboux solutions of the classical Painlevé second equation. We reexpress the classical Painlevé second Lax pair in new setting introducing gauge transformations to yield its Darboux expression in additive form. The new linear system of that equation carries similar structure as other integrable systems possess in the AKNS scheme. Finally, we generalize the Darboux transformation of the classical Painlevé second equation to the N -th form in terms of Wranskian.


1989 ◽  
Vol 03 (02) ◽  
pp. 211-233
Author(s):  
D. H. SATTINGER

The theory of completely integrable systems based on n × n first order isospectral problems is reviewed. The topics discussed are the inverse scattering theory for n × n systems; hierarchies of completely integrable Hamiltonian systems based on semi-simple Lie algebras; flat connections and gauge transformations; and the gauge theory of Bäcklund transformations.


Author(s):  
Elisheva Adina Gamse ◽  
Jonathan Weitsman

We consider the moduli space of flat SO (2 n  + 1)-connections (up to gauge transformations) on a Riemann surface, with fixed holonomy around a marked point. There are natural line bundles over this moduli space; we construct geometric representatives for the Chern classes of these line bundles, and prove that the ring generated by these Chern classes vanishes below the dimension of the moduli space, generalizing a conjecture of Newstead. This article is part of the theme issue ‘Finite dimensional integrable systems: new trends and methods’.


Author(s):  
Peter Mann

This chapter discusses canonical transformations and gauge transformations and is divided into three sections. In the first section, canonical coordinate transformations are introduced to the reader through generating functions as the extension of point transformations used in Lagrangian mechanics, with the harmonic oscillator being used as an example of a canonical transformation. In the second section, gauge theory is discussed in the canonical framework and compared to the Lagrangian case. Action-angle variables, direct conditions, symplectomorphisms, holomorphic variables, integrable systems and first integrals are examined. The third section looks at infinitesimal canonical transformations resulting from functions on phase space. Ostrogradsky equations in the canonical setting are also detailed.


2018 ◽  
Vol 108 (12) ◽  
pp. 2589-2626 ◽  
Author(s):  
Giovanni Landi ◽  
Pierre Martinetti

2017 ◽  
Vol 72 (4) ◽  
pp. 331-337 ◽  
Author(s):  
Zhao-Wen Yan

AbstractThe Heisenberg supermagnet model is an important supersymmetric integrable system in (1+1)-dimensions. We construct two types of the (2+1)-dimensional integrable Heisenberg supermagnet models with the quadratic constraints and investigate the integrability of the systems. In terms of the gage transformation, we derive their gage equivalent counterparts. Furthermore, we also construct new solutions of the supersymmetric integrable systems by means of the Bäcklund transformations.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Machiko Hatsuda ◽  
Shin Sasaki ◽  
Masaya Yata

Abstract We study the current algebras of the NS5-branes, the Kaluza-Klein (KK) five-branes and the exotic $$ {5}_2^2 $$ 5 2 2 -branes in type IIA/IIB superstring theories. Their worldvolume theories are governed by the six-dimensional $$ \mathcal{N} $$ N = (2, 0) tensor and the $$ \mathcal{N} $$ N = (1, 1) vector multiplets. We show that the current algebras are determined through the S- and T-dualities. The algebras of the $$ \mathcal{N} $$ N = (2, 0) theories are characterized by the Dirac bracket caused by the self-dual gauge field in the five-brane worldvolumes, while those of the $$ \mathcal{N} $$ N = (1, 1) theories are given by the Poisson bracket. By the use of these algebras, we examine extended spaces in terms of tensor coordinates which are the representation of ten-dimensional supersymmetry. We also examine the transition rules of the currents in the type IIA/IIB supersymmetry algebras in ten dimensions. Based on the algebras, we write down the section conditions in the extended spaces and gauge transformations of the supergravity fields.


Sign in / Sign up

Export Citation Format

Share Document