scholarly journals Experimental Simulation of Sorption Processes of Heavy Metals on Natural Clay Minerals

Author(s):  
S V Badmaeva ◽  
S Ts Khankhasaeva ◽  
E Ts Dashinamzhilova
2020 ◽  
Vol 66 (No. 12) ◽  
pp. 632-638
Author(s):  
Senad Murtić ◽  
Emina Sijahović ◽  
Hamdija Čivić ◽  
Mirza Tvica ◽  
Josip Jurković

This study attempted to evaluate the efficiency of zeolite and pyrophyllite ore materials in reducing the mobility of heavy metals in soil near the lignite mining dumps, and consequently in their availability for plants. Extraction of pseudo-total and available forms of heavy metals from soil samples was performed by using aqua regia and ethylenediaminetetraacetic acid, respectively. Concentrations of heavy metals in soil and plant samples were determined by atomic absorption spectrophotometry. The results of this study illustrate that application of zeolite and pyrophyllite could be a suitable technique to reduce heavy metals availability in soils. Zeolite treatments have been shown to be significantly effective in reducing cadmium (Cd) mobility, as well as pyrophyllite treatments in reducing lead (Pb) mobility in the studied soil, regardless of applied rates. The accumulation of heavy metals in leaves of maize grown on soil plots treated by zeolite and pyrophyllite, was found to be lower compared to the untreated plots. This finding was to be expected, considering the effects of these treatments on heavy metals mobility in the studied soil.


2009 ◽  
Vol 38 (1) ◽  
Author(s):  
Т.В. Дудар ◽  
С.П. Бугера ◽  
В.М. Кадошніков ◽  
Б.П. Злобенко

2019 ◽  
Vol 185 ◽  
pp. 149-161 ◽  
Author(s):  
Aref Alshameri ◽  
Hongping He ◽  
Chen Xin ◽  
Jianxi Zhu ◽  
Wei Xinghu ◽  
...  

2017 ◽  
Vol 87 ◽  
pp. 22-37 ◽  
Author(s):  
Mohamed A. Cherif ◽  
Arnaud Martin-Garin ◽  
Frédéric Gérard ◽  
Olivier Bildstein

1982 ◽  
Vol 18 (10) ◽  
pp. 355-357 ◽  
Author(s):  
A. S. Abdel-Gawad ◽  
N. Z. Misak ◽  
H. B. Maghrawy ◽  
A. Shafik

2000 ◽  
Vol 37 (2) ◽  
pp. 296-307 ◽  
Author(s):  
Loretta Y Li ◽  
Raymond S Li

The importance of the surface charge of clay minerals (fixed or variable) and the effect of H+ ions on the adsorption and removal of Pb2+ ions from contaminated soil are investigated using kaolinite (variable charge) and two illitic (fixed charge) soils with pH 3.9 and 9.2. The adsorption-desorption characteristics of Pb2+ ions were determined using batch equilibrium tests and acid leach tests with various acids used to leach the soils. Under the same adsorption conditions, illitic soil adsorbed much more Pb2+ ions than kaolinite. The difference is largely due to the surface charges on the clay minerals. Removal of Pb2+ ions from variable-charge minerals (e.g., kaolinite) requires much less effort than removal of Pb2+ ions from constant-charge minerals (e.g., illite). The surface charge of a clay mineral has an important effect. By increasing the number of H+ ions available in the soil system with a buffer solution such as NaOAc-HOAc, heavy metals adsorbed on the clay surface are expelled to pore water. The increase in H+ ions in the soil system also assists in dissolving any metal carbonates, thereby increasing the solubility of heavy metals in illitic soil. The more H+ ions available in the pore fluid, the more Pb2+ ions can be released from the system.Key words: clay minerals, sorption, desorption, heavy metal, hydrogen ion, electrokinetic, acid leach.


Sign in / Sign up

Export Citation Format

Share Document