scholarly journals Elastic Buckling Behavior of Thin Plate with Circle Holes under Axial Compression

Author(s):  
Xingyou Yao ◽  
Xiao Li ◽  
Yanli Guo
Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1923-1935
Author(s):  
Ashish P. Khatri ◽  
Sai Ram Katikala ◽  
Vijaya Krishna Kotapati

2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 2200-2209
Author(s):  
Moe Yamanaka ◽  
Kikuo Ikarashi ◽  
Toru Inaba

1999 ◽  
Author(s):  
Brian T. Wallace ◽  
Bhavani V. Sankar ◽  
Peter G. Ifju

Abstract The present study is concerned with translaminar reinforcement in a sandwich beam for preventing buckling of a delaminated face-sheet under axial compression. Graphite/epoxy pins are used as reinforcement in the thickness direction of sandwich beams consisting of graphite/epoxy face-sheets and a Aramid honeycomb core. Compression tests are performed to understand the effects of the diameter of the reinforcing pins and reinforcement spacing on the ultimate compressive strength of the delaminated beams. A finite element analysis is performed to understand the effects of translaminar reinforcement on the critical buckling loads and post-buckling behavior of the sandwich beam under axial compression.


Author(s):  
Nelson Loaiza ◽  
Carlos Graciano ◽  
Rolando Chacón

This paper aims at investigating the effect of the bearing length on the elastic buckling behavior of longitudinally stiffened girder webs subjected to patch loading. Buckling coefficients are calculated by means of linear finite element analysis. Furthermore, a parametric analysis is performed to study the influence of other geometric parameters such as the panel aspect ratio and the geometrical properties of the longitudinal ones. Buckling coefficients of longitudinally stiffened girder webs are computed numerically. The results show that the buckling coefficient for longitudinally stiffener girder webs increases with the loading length. However, this conclusion is considerably affected by other factors such as the position of the stiffener, and panel aspect ratios.


1994 ◽  
Vol 61 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The post-buckling of stiffened, cross-ply laminated, circular determine the effects of shell lamination scheme and stiffeners on the reduced load-carrying capacity. The effect of geometric imperfection is also included. The analysis is based on the layerwise shell theory of Reddy, and the “smeared stiffener” technique is used to account for the stiffener stiffness. Nu cylinders under uniform axial compression is investigated to merical results for stiffened and unstiffened cylinders are presented, showing that imperfection-sensitivity is strictly related to the number of nearly simultaneous buckling modes.


Sign in / Sign up

Export Citation Format

Share Document