scholarly journals Dynamic Shear Modulus of Frozen Soil under Repeated Cyclic Loading

Author(s):  
Qiong Wang ◽  
Qionglin Li
1996 ◽  
Vol 33 (3) ◽  
pp. 510-514 ◽  
Author(s):  
M O Al-Hunaidi ◽  
P A Chen ◽  
J H Rainer ◽  
M Tremblay

The resonant-column test method was used in this study to determine the dynamic shear moduli and damping ratios of frozen and unfrozen soil samples. Naturally frozen soil specimens were obtained in-situ during the winter. A series of tests were carried out on the frozen soil specimens in a cold room at –9°C. The same specimens, after allowing them to thaw, were then tested at room temperature. Test results show that at low-amplitude shear stains the damping ratio of frozen soil specimens is roughly twice that of unfrozen samples. In addition, the dynamic shear modulus for soil specimens while frozen is significantly greater (30 or 50 times) than that of unfrozen specimens. These results provide a basis for explaining an observation that bus-induced vibrations in buildings while the top soil is frozen in winter are about one-half those induced while the soil is not frozen. Key words: resonant-column test, shear modulus, damping ratio, frozen soil, ground vibration.


2012 ◽  
Vol 238 ◽  
pp. 872-875
Author(s):  
Zhuo Shi Chen ◽  
Shang Jiu Meng ◽  
Yu Run Li ◽  
Long Wei Chen

The analysis of ground motion on seasonal frozen soil mainly focused on the conventional soil, neglecting the impact of the permafrost which causes the obvious defeats in the existed calculation procedure. In this paper, the author proposed that we should apply the field test of shear wave velocity to the soil layer response calculation, improve the test method of dynamic shear modulus, and adopt the regular analysis method of soil layer response to the calculation of frozen soil site.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2017 ◽  
Vol 14 (5) ◽  
pp. 1072-1086 ◽  
Author(s):  
Dongqing Li ◽  
Jianxin Wei ◽  
Bangrang Di ◽  
Pinbo Ding ◽  
Da Shuai

Sign in / Sign up

Export Citation Format

Share Document