scholarly journals The impact of climate change on Building Energy Simulation (BES) uncertainty - Case study from a LEED building in Egypt

Author(s):  
Omar O. Elrawy ◽  
Shady Attia
2018 ◽  
Vol 3 ◽  
pp. 4 ◽  
Author(s):  
Heinrich Manz ◽  
Daniel Micallef ◽  
Simon Paul Borg ◽  
Vincent Buhagiar

The present case study sets out to investigate the potential and limitations of passive building design in a typical Mediterranean climate. The Maltese Islands were taken as the case study location. Assuming a fully detached, cuboid-shaped, generic multi-storey office building, one representative storey was modelled by means of the building energy simulation code WUFI®Plus. Thermal comfort was analysed based on the adaptive acceptable operative room temperature concept of EN 15251 for buildings without mechanical cooling systems. Assuming neither artificial heating nor cooling, the free-running operative room temperature was evaluated. By means of a parametric study, the robustness of the concept was analysed and the impact of orientation, window to wall area ratio, glazing, shading, thermal insulation, nighttime ventilation and thermal mass on the achievable level of thermal comfort is shown and discussed. It is concluded that in a well-designed building and by means of decent insulation (present case: Uwall = 0.54 W/(m2 · K)), double glazing, variable external shading devices and passive cooling by nighttime ventilation, a high level of thermal comfort is achievable in this climate using only very minor amounts of energy for artificial heating and cooling or possibly even none at all.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4805
Author(s):  
Shu Chen ◽  
Zhengen Ren ◽  
Zhi Tang ◽  
Xianrong Zhuo

Globally, buildings account for nearly 40% of the total primary energy consumption and are responsible for 20% of the total greenhouse gas emissions. Energy consumption in buildings is increasing with the increasing world population and improving standards of living. Current global warming conditions will inevitably impact building energy consumption. To address this issue, this report conducted a comprehensive study of the impact of climate change on residential building energy consumption. Using the methodology of morphing, the weather files were constructed based on the typical meteorological year (TMY) data and predicted data generated from eight typical global climate models (GCMs) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5) from 2020 to 2100. It was found that the most severe situation would occur in scenario RCP8.5, where the increase in temperature will reach 4.5 °C in eastern Australia from 2080–2099, which is 1 °C higher than that in other climate zones. With the construction of predicted weather files in 83 climate zones all across Australia, ten climate zones (cities)—ranging from heating-dominated to cooling-dominated regions—were selected as representative climate zones to illustrate the impact of climate change on heating and cooling energy consumption. The quantitative change in the energy requirements for space heating and cooling, along with the star rating, was simulated for two representative detached houses using the AccuRate software. It could be concluded that the RCP scenarios significantly affect the energy loads, which is consistent with changes in the ambient temperature. The heating load decreases for all climate zones, while the cooling load increases. Most regions in Australia will increase their energy consumption due to rising temperatures; however, the energy requirements of Adelaide and Perth would not change significantly, where the space heating and cooling loads are balanced due to decreasing heating and increasing cooling costs in most scenarios. The energy load in bigger houses will change more than that in smaller houses. Furthermore, Brisbane is the most sensitive region in terms of relative space energy changes, and Townsville appears to be the most sensitive area in terms of star rating change in this study. The impact of climate change on space building energy consumption in different climate zones should be considered in future design strategies due to the decades-long lifespans of Australian residential houses.


2020 ◽  
Vol 94 ◽  
pp. 101992
Author(s):  
I.A. Mosquera-Mosquera ◽  
Marina L. Simão ◽  
Paulo M. Videiro ◽  
Luis V.S. Sagrilo

Sign in / Sign up

Export Citation Format

Share Document