scholarly journals Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine

Author(s):  
B S Thapa ◽  
O G Dahlhaug ◽  
B Thapa
Author(s):  
Gnanasekaran Kishor Kumar ◽  
Tadachika Tanaka ◽  
Naoki Yamaguchi ◽  
Toui Taniwaki ◽  
Kazuyoshi Miyagawa ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 302-309
Author(s):  
Einar Agnalt ◽  
Bjørn Winther Solemslie ◽  
Pål-Tore Selbo Storli ◽  
Ole Gunnar Dahlhaug

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Einar Agnalt ◽  
Igor Iliev ◽  
Bjørn W. Solemslie ◽  
Ole G. Dahlhaug

The rotor stator interaction in a low specific speed Francis model turbine and a pump-turbine is analyzed utilizing pressure sensors in the vaneless space and in the guide vane cascade. The measurements are analyzed relative to the runner angular position by utilizing an absolute encoder mounted on the shaft end. From the literature, the pressure in the analyzed area is known to be a combination of two effects: the rotating runner pressure and the throttling of the guide vane channels. The measured pressure is fitted to a mathematical pressure model to separate the two effects for two different runners. One turbine with 15+15 splitter blades and full-length blades and one pump-turbine with six blades are investigated. The blade loading on the two runners is different, giving different input for the pressure model. The main findings show that the pressure fluctuations in the guide vane cascade are mainly controlled by throttling for the low blade loading case and the rotating runner pressure for the higher blade loading case.


2013 ◽  
Vol 444-445 ◽  
pp. 476-478 ◽  
Author(s):  
Yong Zhong Zeng ◽  
Xiao Bing Liu

If deviating from the optimal operation conditions, flow separation will occur on the blade of the runner in a low specific speed turbine. At this time, the turbulent flow of flow field in the blade duct will be in a strong non-equilibrium state, and thus the blade duct vortexes will be generated. To further study the mechanism of blade duct vortexes and to control the generation of these vortexes, Spalart-Allmaras (S-A) model was used to numerically simulate and calculate the internal flow in the low specific speed turbine runner under low load conditions. The blade duct vortexes in the turbine runner were accurately predicted. The effect of short blade in eliminating and reducing the vortexes in the low specific speed turbine runner was analyzed and compared.


2020 ◽  
Vol 1608 ◽  
pp. 012016
Author(s):  
Saroj Gautam ◽  
Ram Lama ◽  
Sailesh Chitrakar ◽  
Hari Prasad Neopane ◽  
Biraj Singh Thapa ◽  
...  

Author(s):  
Sabri Deniz ◽  
Armando Del Rio ◽  
Martin von Burg ◽  
Manuel Tiefenthaler

Abstract This is the first part of a two-part paper focusing on the flow instabilities of low-specific pump turbines. In this part, results of the CFD simulations and experiments of the research carried out on a low specific speed model pump-turbine at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. The requirements of a stable and reliable pump-turbine operation under continuously expanding operating ranges, challenges the hydraulic design and requires new developments. Previous research at the HSLU [1] analyzed the instabilities of a medium specific speed (i.e. nq = 45) pump turbine. This paper presents the results of experimental (model pump-turbine at the test rig) and numerical (CFD) investigations of the pump-turbine instabilities of a low specific speed (nq = 25) pump-turbine in the turbine operating mode in the region of S-shaped characteristics (that is where the pump-turbine is synchronized and oscillations may occur during load rejection). The four-quadrant characteristics of a low specific speed model pump-turbine with two similar runners differentiating in the size (diameter) are measured. Testing of both runners with the same guide vane system provided information about the effects of the increased vaneless space (the distance between the guide vanes and runner) on the pump-turbine performance and stability both in turbine- and pump operating modes. A CFD methodology by using different numerical approaches and applying several turbulence models is developed in order to accurately predicting the characteristics of the reversible pump-turbines in the S-shaped region (speed no load conditions) as well as analyzing the flow features especially at off-design conditions. This CFD model is validated against the experimental data at 6° and 18° guide vane openings in turbine operating mode. With the measured data of the unsteady pressure measurements and detailed investigation of unstable ranges on the pump-turbine characteristics, flow instabilities in the low-specific speed model pump-turbine are analyzed. Relevant frequencies such as rotating stall, steady and unsteady vortex formations are determined. Based on the analysis of the experimental data and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities are explored.


Sign in / Sign up

Export Citation Format

Share Document