scholarly journals On the Rotor Stator Interaction Effects of Low Specific Speed Francis Turbines

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Einar Agnalt ◽  
Igor Iliev ◽  
Bjørn W. Solemslie ◽  
Ole G. Dahlhaug

The rotor stator interaction in a low specific speed Francis model turbine and a pump-turbine is analyzed utilizing pressure sensors in the vaneless space and in the guide vane cascade. The measurements are analyzed relative to the runner angular position by utilizing an absolute encoder mounted on the shaft end. From the literature, the pressure in the analyzed area is known to be a combination of two effects: the rotating runner pressure and the throttling of the guide vane channels. The measured pressure is fitted to a mathematical pressure model to separate the two effects for two different runners. One turbine with 15+15 splitter blades and full-length blades and one pump-turbine with six blades are investigated. The blade loading on the two runners is different, giving different input for the pressure model. The main findings show that the pressure fluctuations in the guide vane cascade are mainly controlled by throttling for the low blade loading case and the rotating runner pressure for the higher blade loading case.

Author(s):  
Sabri Deniz ◽  
Armando Del Rio ◽  
Martin von Burg ◽  
Manuel Tiefenthaler

Abstract This is the first part of a two-part paper focusing on the flow instabilities of low-specific pump turbines. In this part, results of the CFD simulations and experiments of the research carried out on a low specific speed model pump-turbine at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. The requirements of a stable and reliable pump-turbine operation under continuously expanding operating ranges, challenges the hydraulic design and requires new developments. Previous research at the HSLU [1] analyzed the instabilities of a medium specific speed (i.e. nq = 45) pump turbine. This paper presents the results of experimental (model pump-turbine at the test rig) and numerical (CFD) investigations of the pump-turbine instabilities of a low specific speed (nq = 25) pump-turbine in the turbine operating mode in the region of S-shaped characteristics (that is where the pump-turbine is synchronized and oscillations may occur during load rejection). The four-quadrant characteristics of a low specific speed model pump-turbine with two similar runners differentiating in the size (diameter) are measured. Testing of both runners with the same guide vane system provided information about the effects of the increased vaneless space (the distance between the guide vanes and runner) on the pump-turbine performance and stability both in turbine- and pump operating modes. A CFD methodology by using different numerical approaches and applying several turbulence models is developed in order to accurately predicting the characteristics of the reversible pump-turbines in the S-shaped region (speed no load conditions) as well as analyzing the flow features especially at off-design conditions. This CFD model is validated against the experimental data at 6° and 18° guide vane openings in turbine operating mode. With the measured data of the unsteady pressure measurements and detailed investigation of unstable ranges on the pump-turbine characteristics, flow instabilities in the low-specific speed model pump-turbine are analyzed. Relevant frequencies such as rotating stall, steady and unsteady vortex formations are determined. Based on the analysis of the experimental data and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities are explored.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Einar Agnalt ◽  
Petter Østby ◽  
Bjørn W. Solemslie ◽  
Ole G. Dahlhaug

An analysis of the pressure in a runner channel of a low-specific speed Francis model runner during resonance is presented, which includes experiments and the development of a pressure model to estimate both the convective and acoustic pressure field from the measurements. The pressure was measured with four pressure sensors mounted in the runner hub along one runner channel. The mechanical excitation of the runner corresponded to the forced excitation from rotor-stator interaction. The rotational speed was used to control the excitation frequency. The measurements found a clear resonance peak in the pressure field excited by the second harmonic of the guide vane passing frequency. From the developed pressure model, the eigenfrequency and damping were estimated. The convective pressure field seems to diminish almost linearly from the inlet to outlet of the runner, while the acoustic pressure field had the highest amplitudes in the middle of the runner channel. At resonance, the acoustic pressure clearly dominated over the convective pressure. As the turbine geometry is available to the public, it provides an opportunity for the researchers to verify their codes at resonance conditions.


Author(s):  
Sabri Deniz ◽  
Martin von Burg ◽  
Manuel Tiefenthaler

Abstract This the second part of a two-part paper focusing on the flow instabilities of low-specific pump turbines. In this part, results of the flow control application with fluid injection (using both water and air) in the vaneless space in order to suppress the flow instabilities of a low specific speed model pump-turbine in turbine mode operation at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. Based on the analysis of the experimental data, flow visualization, and CFD results focusing especially on the flow features in the vaneless space and at the runner inlet, the onset and development of the flow instabilities are explored as presented in the first part of this paper. Based on these analyses, the flow control technology by injecting air and water as well as suction of the fluid in the vaneless space of the model pump-turbine is implemented for suppressing the flow instabilities and thus extending the operating range of the pump-turbine. Both air- and water-injection are applied by using an external energy source (compressor and pump) and discrete nozzles circumferentially distributed in the vaneless space. The S-shaped pump-turbine characteristics in turbine operating mode are modified so that the slope at speed no load conditions is no more positive meaning an improvement in the stability behavior. To the best of our knowledge, this is the first successful application of flow control with fluid injection in the vaneless space of pump-turbines. Fluid injection is applied at two different guide vane openings, i.e. at 6° and 18°. The analysis of the unsteady pressure data indicates the suppression of flow instability such as rotating stall with fluid injection in the vaneless space. The water injection is more effective than the air injection for modifying the slope of the pump-turbine characteristics.


Author(s):  
Deyou Li ◽  
Hongjie Wang ◽  
Jinxia Chen ◽  
Torbjørn K. Nielsen ◽  
Daqing Qin ◽  
...  

The hump characteristic is one of the major instabilities in pump-turbines. When pump-turbines operate in the hump region, strong noise and serious fluctuations could be observed, which are harmful to the safe and stable operations and even destroy the whole unit as well as water conveyance system. In this paper, a low specific speed (nq = 36.1 min−1) pump-turbine model was experimentally investigated. Firstly, the hump characteristic was obtained under 19 mm guide vane opening. More interestingly, when the hump characteristic was measured in two directions (increasing and decreasing the discharge), the hysteresis characteristic was found during the hump region. The analysis of performance characteristics reveals that the hump instability is resultant of Euler momentum and hydraulic losses, and different Euler momentum and hydraulic losses in the two development processes lead to hysteresis phenomenon. Then, 12 pressure sensors were mounted in the different parts of the pump-turbine model to obtain the time and frequency characteristics. The analysis of fast Fourier transform confirms that the hump characteristic is related to the low-frequency (0.04–0.15 times rotational frequency) vortices. The occurrence and cease of vortices depend on the operating condition and measurement direction, which contribute to the hysteresis characteristic. Finally, the type of the low-frequency vortices was analyzed through the cross power spectrum.


Author(s):  
Can Kang ◽  
Ning Mao ◽  
Chen Pan ◽  
Yang Zhu ◽  
Bing Li

A low-specific-speed centrifugal pump equipped with long and short blades is studied. Emphasis is placed on the pump performance and inner flow characteristics at low flow rates. Each short blade is intentionally shifted towards the back surface of the neighboring long blade, and the outlet parts of the short blades are uniformly shortened. Unsteady numerical simulation is conducted to disclose inner flow patterns associated with the modified design. Thereby, a comparison is enabled between the two schemes featured by different short blades. Both practical operation data and numerical results support that the deviation and cutting of the short blades can eliminate the positive slope of pump head curve at low flow rates. Therefore, the modification of short blades improves the pump operation stability. Due to the shortening of the outlet parts of the short blades, velocity distributions between impeller outlet and radial diffuser inlet exhibit explicitly altered circumferential flow periodicity. Pressure fluctuations in the radial diffuser are complex in terms of diversified periodicity and amplitudes. Flow rate influences pressure fluctuations in the radial diffuser considerably. As flow rate decreases, the regularity of the orbit of hydraulic loads exerted upon the impeller collapses while hydraulic loads exerted upon the short blades remain circumferentially periodic.


2012 ◽  
Vol 152-154 ◽  
pp. 935-939 ◽  
Author(s):  
Qiang Fu ◽  
Shou Qi Yuan ◽  
Rong Sheng Zhu

In order to study the rules of pressure fluctuation and the radial force under different positions in a centrifugal pump with low specific speed, and to find the relationship between each other, the three-dimensional ,unsteady Reynolds-averaged Navier-stokes equations with shear stress transport turbulent models were solved. The pressure fluctuation was obtained. The results showed that the pressure fluctuations were visible. The pressure fluctuations in the volute were relatively low at the design flow rate condition. The blade passing frequency dominates the pressure fluctuations, high frequency contents were found on the outlet of impeller but no high frequency information occured in casing. The radial force on the impeller was unsteady especially at the small flow rate.


Author(s):  
R. C. Pampreen

The design features and development experience of an advanced automotive gas turbine centrifugal compressor are presented. The compressor was designed with moderately low specific speed, high blade aerodynamic loading and design point on the choke characteristic. A cascade diffuser was used; a new design approach brought about an unusual performance characteristic. The influence of impeller blade loading on performance is presented. Lessons learned are summarized.


2020 ◽  
Vol 13 (2) ◽  
pp. 302-309
Author(s):  
Einar Agnalt ◽  
Bjørn Winther Solemslie ◽  
Pål-Tore Selbo Storli ◽  
Ole Gunnar Dahlhaug

Sign in / Sign up

Export Citation Format

Share Document