scholarly journals Deep Structure of the Eastern Margin of the Siberian Craton, NE Russia: Evidence from Analysis of an Anomalous Gravitational Field

Author(s):  
Evgeny Solovyov ◽  
Valery Fridovsky
2021 ◽  
Vol 43 (3) ◽  
pp. 27-46
Author(s):  
V. V. Stogny ◽  
G. A. Stogny

Profile 3-DV (Skovorodino-Tommot) crosses in the sublatitudinal direction the Stanovoy and Aldan megablocks of the Aldan-Stanovoy shield. As the basic elements of the Earth’s crust section along the profile 3-DV, a technique was adopted for identifying regional inhomogeneities of the lithosphere based on the results of the analysis of seismic and gravimetric data with subsequent typification of their nature. According to the SRM-CMP data, in the upper part of the section (up to 35 km) of the Aldan megablock, the Yakokut and Chulman heterogeneities are distinguished, and the Stanovoy megablock — the Kalara-Dzhugdzhur heterogeneity. The Yakokut and Chulman seismic inhomogeneities in the gravitational field correspond to minima with an the amplitude of up to 25 mGal. The gravitational field of the Kalara-Dzhugdzhur heterogeneity is mosaic and reflects its block structure. It is shown that the deep structure of the Aldan megablock in the area of the 3-DV profile is determined by the Yakokut granite-gneiss dome and Chulman sublateral decompaction zone, and the upper part (0—25 km) of the Stanovoy megablock is represented by the Kalar-Dzhugdzhur structure, composed of the Stanovoy complex of rocks  and blocks of highpressure granulites. A significant (up to 10 km) increase in the thickness of the earth’s crust of the Aldan megablock is explained by the presence of the upper layer juvenile crust formed in the Paleoproterozoic as a result of regional metamorphism of igneous rocks. The Earth’s crust of the Stanovoy megablock is tectonically rebuilt for almost the entire thickness of up to 40 km during the Mesozoic collision of the Precambrian North Asian and Sino-Korean cratons. The Yakokut granite-gneiss dome, in accordance with the proposed model of the structure of the Earth’s crust of the Aldan megablock, is the ore-controlling structure of the Central Aldan gold-bearing region, and highpressure granulites of the Zverevsky block of the Kalara-Dzhugdzhur heterogeneity of the Stanovoy megablock served as a source of gold in the Chako-Berkakit ore cluster.


2021 ◽  
Vol 2 (2) ◽  
pp. 312-318
Author(s):  
Vladimir D. Suvorov ◽  
Evgeny V. Pavlov ◽  
Elena A. Melnik

The data are part of a complex of geophysical studies along the 3-DV profile, which is part of the system of regional profiles of the Russian Federation. Seismic and gravity observations characterizing the structure of the Earth’s crust along an about 600-km-long section of the 3-DV profile crossing the eastern margin of the Archean Siberian Craton, which borders the Mesozoic Verkhoyansk-Kolyma fold system, are considered.


10.1144/m54.4 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe Southeastern Oman Mountains are dominated by two major culminations: the Jabal Akhdar and Saih Hatat domes, surrounded by allochthonous and/or neo-autochthonous rocks. In the cores of both domes, folded autochthonous and par-autochthonous pre-Permian metasedimentary rocks are exposed, subjacent to the ‘Hercynian’ Unconformity. Above the unconformity are Permo--Mesozoic shelfal sedimentary rocks, characterized by carbonates. These sedimentary rocks were openly folded. The open folds are large-scale elongate structures that define the shapes of both domes. The main elongation direction is NW--SE. Doming is syn- to post-obductional. Most margins of the domes are marked by major post-obductional, extensional faults. Reactivated basement faults along the eastern margin of the Jabal Akhdar Dome may be responsible for the straight NNE-striking eastern margin which is perpendicular to the main elongation direction of the domes. The deep structure of both domes is poorly known. However, the Moho depth below the centre of the Jabal Akhdar Dome is at 50 km. We present a geological map of both domes, depicting the main faults and folds, and schematic cross-sections, parallel and perpendicular to the Oman Mountains.


2021 ◽  
Author(s):  
Valentina Mordvinova ◽  
Maria Khritova ◽  
Elena Kobeleva ◽  
Mikhail Kobelev ◽  
Irina Chuvashova ◽  
...  

2016 ◽  
Vol 20 (4) ◽  
pp. 1
Author(s):  
Jun Li ◽  
Xuben Wang ◽  
Qingyan Qin ◽  
Gang Zhang ◽  
Dahu Li ◽  
...  

The eastern margin of the Qinghai–Tibet Plateau (QTP) is the focus of studies on eastward lateral extrusion of the latter’s crustal material. This study aims to explore the structural response of the QTP’s eastern crust–mantle to the extrusion, and the basis for the latter’s geological structure. Data on long-period magnetotelluric sounding of cross-tectonic units and Bouguer gravity were used to determine the physical structure of the crust–mantle at the plateau’s eastern margin. The findings are as follows: (i) the apparent density structure indicates extensive presence of a low-density material in the middle–lower crusts of the Songpan and Sichuan–Yunnan blocks at the QTP’s eastern margin. On the other hand, the Yangtze cratonic block (Sichuan Basin) contains a material with a significantly higher density. To the west of the Longmenshan–Panxi tectonic zones, and along the lower crust at 40–50 km depth, is an obvious low-density zone aligned in a northeast–southwest orientation; (ii) the electrical structural model spanning Songpan block–Longmenshan tectonic zone–Yangtze block reveals three distinct electrical structural units along the cross-section bounded by the Longmenshan tectonic zone. The first is the Songpan block, which has high and low resistivity at the shallow layer and middle–lower crusts, respectively. Next is the Yangtze craton, which has low and relatively higher resistivity at the shallow layer and middle–lower crusts, respectively. Third is the Longmenshan transitional tectonic zone, whose shallow layer and deep structure are characterized by an electrical structure with a thrust nappe towards the east, and a high-conductivity material extending to the lithospheric mantle, respectively; (iii) the apparent density and electrical structures indicate that the Panxi tectonic zone has a weakened structure in the lower crust; and (iv) physical properties of the QTP’s deep structure indicate that its eastern margin may contain a middle–lower crustal fluid material with the attributes of high conductivity and low density. Its distribution is closely related to the uplift mechanism and deep seismogenic activities at the QTP’s eastern margin. Estructura profunda e implicaciones geotectónicas del margen oriental del altiplano Qinghai-Tíbet ResumenEl margen oriental del altiplano Qinghai-Tíbet (QTP, del inglés Qinghai-Tibet Plateau) es el área de la extrusión lateral hacia el Este de material cortical. Este trabajo se enfoca en explorar la respuesta estructural de las capas superiores en el altiplano y las bases para su estructuración geológica. Se utilizó información magnetotelúrica y anomalías de Bouguer para determinar la respuesta geofísica de las capas superiores en el margen occidental del altiplano. Dentro de los principales resultados se tiene: (i) la distribución de la densidad aparente indica la presencia de material de baja densidad en las capas medias y bajas de los bloques Songpan y Sichuan-Yunnan en el Este del QTP. Por otro lado, el bloque cratónico Yangtze (en la cuenca Sichuan) contiene material con una mayor densidad. Al oeste de las zonas tectónicas Longmeshan-Panxi, y a lo largo de las capas inferiores, entre 40 y 50 kilómetros de profundidad, hay una zona de baja densidad con orientación noreste-suroeste. (ii) El modelo eléctrico que abarca el bloque Songpan, la zona tectónica Longmeshan y el bloque Yangtze, revela tres unidades a lo largo de la sección cruzada subordinada a la zona tectónica Longmenshan. La primera unidad está en el bloque Songpan, con alta resistividad en la capa superficial y baja en las capas media e inferiores. Luego aparece el cratón Yangtze, con baja resistividad en la superficie y resistividad media en las capas media e inferiores. La tercera unidad es la zona tectónica transicional de Longmenshan, cuya estructura superficial y profunda está caracterizada por una estructura eléctrica asociada a una falla de cabalgamiento hacia el Este y alta conductividad de material que se extiende hacia el manto litosférico. (iii) La densidad aparente y las estructuras eléctricas indican que la zona tectónica de Panxi está debilitada en las capas inferiores. (iv) las propiedades geofísicas de la estructura profunda del altiplano Qinghai-Tíbet muestran que su margen oriental puede contener un fluido de material en las capas bajas y medias con características de alta conductividad y baja densidad. Su distribución está interrelacionada con el mecanismo de elevación y las actividades sismogénicas profundas en el margen oriental del altiplano.


Lithos ◽  
2013 ◽  
Vol 174 ◽  
pp. 44-56 ◽  
Author(s):  
Andrei K. Khudoley ◽  
Andrei V. Prokopiev ◽  
Kevin R. Chamberlain ◽  
Richard E. Ernst ◽  
Simon M. Jowitt ◽  
...  

1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1984 ◽  
Vol 75 ◽  
pp. 361-362
Author(s):  
André Brahic

AbstractThe dynamical evolution of planetary discs in the gravitational field of an oblate planet and a satellite is numerically simulated.


Sign in / Sign up

Export Citation Format

Share Document