scholarly journals Transparent boundary condition for the momentum conservative scheme of the shallow water equations

Author(s):  
M A Ginting ◽  
S R Pudjaprasetya ◽  
D Adytia ◽  
L H Wiryanto
1996 ◽  
Vol 18 (1) ◽  
pp. 27-33
Author(s):  
Pham Van Ninh ◽  
Tran Thi Ngoc Duyet

Steichen in the Gulf of Tonkin has been studied by numerical modelling based on the two-dimensional nonlinear shallow water equations system with liquid boundary condition given in the form of forced oscillation. The main proper periods have been defined as follows: 23-25 hours, 1-12 hours, 5-7 hours, 2-4 hours. Among them the 23 hours period is the most evident. The obtained results coincide with observed ones at the long shore hydrometeological stations of the Gulf.


2020 ◽  
Vol 10 (18) ◽  
pp. 6172
Author(s):  
Shanshan Xu ◽  
Frédéric Dias

Wave reflection and wave trapping can lead to long wave run-up resonance. After reviewing the theory of run-up resonance in the framework of the linear shallow water equations, we perform numerical simulations of periodic waves incident on a linearly sloping beach in the framework of the nonlinear shallow water equations. Three different types of boundary conditions are tested: fully reflective boundary, relaxation zone, and influx transparent boundary. The effect of the boundary condition on wave run-up is investigated. For the fully reflective boundary condition, it is found that resonant regimes do exist for certain values of the frequency of the incoming wave, which is consistent with theoretical results. The influx transparent boundary condition does not lead to run-up resonance. Finally, by decomposing the left- and right-going waves into a multi-reflection system, we find that the relaxation zone can lead to run-up resonance depending on the length of the relaxation zone.


2014 ◽  
Vol 4 (2) ◽  
pp. 152-165 ◽  
Author(s):  
S. R. Pudjaprasetya ◽  
I. Magdalena

AbstractWe discuss the implementation of the finite volume method on a staggered grid to solve the full shallow water equations with a conservative approximation for the advection term. Stelling & Duinmeijer [15] noted that the advection approximation may be energy-head or momentum conservative, and if suitable which of these to implement depends upon the particular flow being considered. The momentum conservative scheme pursued here is shown to be suitable for 1D problems such as transcritical flow with a shock and dam break over a rectangular bed, and we also found that our simulation of dam break over a dry sloping bed is in good agreement with the exact solution. Further, the results obtained using the generalised momentum conservative approximation for 2D shallow water equations to simulate wave run up on a conical island are in good agreement with benchmark experimental data.


1996 ◽  
Vol 317 ◽  
pp. 241-273 ◽  
Author(s):  
M. Brocchini ◽  
D. H. Peregrine

The swash zone is that part of a beach over which the instantaneous shoreline moves back and forth as waves meet the shore. This zone is discussed using the nonlinear shallow water equations which are appropriate for gently sloping beaches. A weakly three-dimensional extension of the two-dimensional solution by Carrier & Greenspan (1958) of the shallow water equations for a wave reflecting on an inclined plane beach is developed and used to illustrate the ideas. Thereafter attention is given to integrated and averaged quantities. The mean shoreline might be defined in several ways, but for modelling purposes we find the lower boundary of the swash zone to be more useful. A set of equations obtained by integrating across the swash zone is investigated as a model for use as an alternative boundary condition for wave-resolving studies. Comparison with sample numerical computations illustrates that they are effective in modelling the dynamics of the swash zone and that a reasonable representation of swash zone flows may be obtained from the integrated variables. The longshore flow of water in the swash zone is in many ways similar to the Stokes’ drift of propagating water waves. Further averaging is made over short waves to obtain results suitable as boundary conditions for longer period motions including the effect of incident short waves. In order to clearly present the work a few simplifications are made. The main result is that in addition to the kinematic type of boundary condition that occurs on a simple, e.g. rigid, boundary two further conditions are found in order that both the changing position of the swash zone boundary and the longshore flow in the swash zone may be determined. Models of the short waves both outside and inside the swash zone are needed to complete a full wave-averaged model; only brief indication is given of such modelling.


Author(s):  
Xiao-Hua Zhu ◽  
Xiao-Hua Zhu ◽  
Ze-Nan Zhu ◽  
Ze-Nan Zhu ◽  
Xinyu Guo ◽  
...  

A coastal acoustic tomography (CAT) experiment for mapping the tidal currents in the Zhitouyang Bay was successfully carried out with seven acoustic stations during July 12 to 13, 2009. The horizontal distributions of tidal current in the tomography domain are calculated by the inverse analysis in which the travel time differences for sound traveling reciprocally are used as data. Spatial mean amplitude ratios M2 : M4 : M6 are 1.00 : 0.15 : 0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, velocity amplitudes of M4 measured by CAT agree well with those of M4 predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area where water depths are larger than 60 m is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. Dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents.


Sign in / Sign up

Export Citation Format

Share Document