Integral flow properties of the swash zone and averaging

1996 ◽  
Vol 317 ◽  
pp. 241-273 ◽  
Author(s):  
M. Brocchini ◽  
D. H. Peregrine

The swash zone is that part of a beach over which the instantaneous shoreline moves back and forth as waves meet the shore. This zone is discussed using the nonlinear shallow water equations which are appropriate for gently sloping beaches. A weakly three-dimensional extension of the two-dimensional solution by Carrier & Greenspan (1958) of the shallow water equations for a wave reflecting on an inclined plane beach is developed and used to illustrate the ideas. Thereafter attention is given to integrated and averaged quantities. The mean shoreline might be defined in several ways, but for modelling purposes we find the lower boundary of the swash zone to be more useful. A set of equations obtained by integrating across the swash zone is investigated as a model for use as an alternative boundary condition for wave-resolving studies. Comparison with sample numerical computations illustrates that they are effective in modelling the dynamics of the swash zone and that a reasonable representation of swash zone flows may be obtained from the integrated variables. The longshore flow of water in the swash zone is in many ways similar to the Stokes’ drift of propagating water waves. Further averaging is made over short waves to obtain results suitable as boundary conditions for longer period motions including the effect of incident short waves. In order to clearly present the work a few simplifications are made. The main result is that in addition to the kinematic type of boundary condition that occurs on a simple, e.g. rigid, boundary two further conditions are found in order that both the changing position of the swash zone boundary and the longshore flow in the swash zone may be determined. Models of the short waves both outside and inside the swash zone are needed to complete a full wave-averaged model; only brief indication is given of such modelling.

2010 ◽  
Vol 660 ◽  
pp. 221-239 ◽  
Author(s):  
W. R. C. PHILLIPS ◽  
A. DAI ◽  
K. K. TJAN

The Lagrangian drift in anO(ϵ) monochromatic wave field on a shear flow, whose characteristic velocity isO(ϵ) smaller than the phase velocity of the waves, is considered. It is found that although shear has only a minor influence on drift in deep-water waves, its influence becomes increasingly important as the depth decreases, to the point that it plays a significant role in shallow-water waves. Details of the shear flow likewise affect the drift. Because of this, two temporal cases common in coastal waters are studied, viz. stress-induced shear, as would arise were the boundary layer wind-driven, and a current-driven shear, as would arise from coastal currents. In the former, the magnitude of the drift (maximum minus minimum) in shallow-water waves is increased significantly above its counterpart, viz. the Stokes drift, in like waves in otherwise quiescent surroundings. In the latter, on the other hand, the magnitude decreases. However, while the drift at the free surface is always oriented in the direction of wave propagation in stress-driven shear, this is not always the case in current-driven shear, especially in long waves as the boundary layer grows to fill the layer. This latter finding is of particular interest vis-à-vis Langmuir circulations, which arise through an instability that requires differential drift and shear of the same sign. This means that while Langmuir circulations form near the surface and grow downwards (top down), perhaps to fill the layer, in stress-driven shear, their counterparts in current-driven flows grow from the sea floor upwards (bottom up) but can never fill the layer.


1987 ◽  
Vol 10 (3) ◽  
pp. 557-562 ◽  
Author(s):  
Yilmaz Akyildiz

We consider the system of nonlinear differential equations governing shallow water waves over a uniform or sloping bottom. By using the hodograph method we construct solutions, conservation laws, and Böcklund transformations for these equations. We show that these constructions are canonical relative to a symplectic form introduced by Manin.


1996 ◽  
Vol 18 (1) ◽  
pp. 27-33
Author(s):  
Pham Van Ninh ◽  
Tran Thi Ngoc Duyet

Steichen in the Gulf of Tonkin has been studied by numerical modelling based on the two-dimensional nonlinear shallow water equations system with liquid boundary condition given in the form of forced oscillation. The main proper periods have been defined as follows: 23-25 hours, 1-12 hours, 5-7 hours, 2-4 hours. Among them the 23 hours period is the most evident. The obtained results coincide with observed ones at the long shore hydrometeological stations of the Gulf.


1984 ◽  
Vol 146 ◽  
pp. 369-382 ◽  
Author(s):  
N. Sugimoto ◽  
T. Kakutani

To investigate reflection of a shallow-water soliton at a sloping beach, the edge-layer theory is developed to obtain a ‘reduced’ boundary condition relevant to the simplified shallow-water equation describing the weakly dispersive waves of small but finite amplitude. An edge layer is introduced to take account of the essentially two-dimensional motion that appears in the narrow region adjacent to the beach. By using the matched-asymptotic-expansion method, the edge-layer theory is formulated to cope with the shallow-water theory in the offshore region and the boundary condition at the beach. The ‘reduced’ boundary condition is derived as a result of the matching condition between the two regions. An explicit edge-layer solution is obtained on assuming a plane beach.


1984 ◽  
Vol 142 ◽  
pp. 79-95 ◽  
Author(s):  
D. V. Evans ◽  
P. Mciver

Edge-wave solutions to the linearized shallow-water equations for water waves are well known for a variety of bottom topographies. The only explicit solution using the full linearized theory describes edge waves over a uniformly sloping beach, although the existence of such waves has been established for a wide class of bottom geometries. In this paper the full linearized theory is used to derive the properties of edge waves over a shelf. In particular, curves are presented showing the variation of frequency with wavenumber along the shelf, together with some mode shapes for a particular shelf geometry.


Author(s):  
Anna Geyer ◽  
Ronald Quirchmayr

We present derivations of shallow water model equations of Korteweg–de Vries and Boussinesq type for equatorial tsunami waves in the f -plane approximation and discuss their applicability. This article is part of the theme issue ‘Nonlinear water waves’.


Author(s):  
Boris Kolev

This paper is a survey article on bi-Hamiltonian systems on the dual of the Lie algebra of vector fields on the circle. Here, we investigate the special case where one of the structures is the canonical Lie–Poisson structure and the second one is constant. These structures, called affine or modified Lie–Poisson structures, are involved in the integrability of certain Euler equations that arise as models for shallow water waves.


2017 ◽  
Vol 833 ◽  
pp. 1-28 ◽  
Author(s):  
Konstantin Ilin

We consider a layer of an inviscid fluid with a free surface which is subject to vertical high-frequency vibrations. We derive three asymptotic systems of equations that describe slowly evolving (in comparison with the vibration frequency) free-surface waves. The first set of equations is obtained without assuming that the waves are long. These equations are as difficult to solve as the exact equations for irrotational water waves in a non-vibrating fluid. The other two models describe long waves. These models are obtained under two different assumptions about the amplitude of the vibration. Surprisingly, the governing equations have exactly the same form in both cases (up to the interpretation of some constants). These equations reduce to the standard dispersionless shallow-water equations if the vibration is absent, and the vibration manifests itself via an additional term which makes the equations dispersive and, for small-amplitude waves, is similar to the term that would appear if surface tension were taken into account. We show that our dispersive shallow-water equations have both solitary and periodic travelling wave solutions and discuss an analogy between these solutions and travelling capillary–gravity waves in a non-vibrating fluid.


2001 ◽  
Vol 449 ◽  
pp. 313-339 ◽  
Author(s):  
OLIVER BÜHLER ◽  
TIVON E. JACOBSON

We present a theoretical and numerical investigation of longshore currents driven by breaking waves on beaches, especially barred beaches. The novel feature considered here is that the wave envelope is allowed to vary in the alongshore direction, which leads to the generation of strong dipolar vortex structures where the waves are breaking. The nonlinear evolution of these vortex structures is studied in detail using a simple analytical theory to model the effect of a sloping beach. One of our findings is that the vortex evolution provides a robust mechanism through which the preferred location of the longshore current can move shorewards from the location of wave breaking. Such current dislocation is an often-observed (but ill-understood) phenomenon on real barred beaches.To underpin our results, we present a comprehensive theoretical description of the relevant wave–mean interaction theory in the context of a shallow-water model for the beach. Therein we link the radiation-stress theory of Longuet-Higgins & Stewart to recently established results concerning the mean vorticity generation due to breaking waves. This leads to detailed results for the entire life-cycle of the mean-flow vortex evolution, from its initial generation by wave breaking until its eventual dissipative decay due to bottom friction.In order to test and illustrate our theory we also present idealized nonlinear numerical simulations of both waves and vortices using the full shallow-water equations with bottom topography. In these simulations wave breaking occurs through shock formation of the shallow-water waves. We note that because the shallow-water equations also describe the two-dimensional flow of a homentropic perfect gas, our theoretical and numerical results can also be applied to nonlinear acoustics and sound–vortex interactions.


Sign in / Sign up

Export Citation Format

Share Document