scholarly journals Modelling 2D water table and soil moisture distribution in a field installed with sub surface drainage

Author(s):  
S K Saptomo ◽  
C Arif ◽  
W B Suwarno ◽  
Rudiyanto ◽  
M Askari ◽  
...  
2000 ◽  
Vol 4 (1) ◽  
pp. 65-78 ◽  
Author(s):  
H. Koivusalo ◽  
T. Karvonen ◽  
A. Lepistö

Abstract. Runoff generation in a forested catchment (0.18 km2) was simulated using a quasi-three-dimensional rainfall-runoff model. The model was formulated over a finite grid where water movement was assumed to be dominantly vertical in the unsaturated soil zone and horizontal in the saturated soil. The vertical soil moisture distribution at each grid cell was calculated using a conceptual approximation to the one-dimensional Richards equation. The approximation allowed the use of a simple soil surface boundary condition and an efficient solution to the water table elevation over the finite grid. The approximation was coupled with a two-dimensional ground water model to calculate lateral soil water movement between the grid cells and exfiltration over saturated areas, where runoff was produced by the saturation-excess mechanism. Runoff was an input to a channel network, which was modelled as a nonlinear reservoir. The proposed approximation for the vertical soil moisture distribution in unsaturated soil compared well to a numerical solution of the Richards equation during shallow water table conditions, but was less satisfactory during prolonged dry periods. The simulation of daily catchment outflow was successful with the exception of underprediction of extremely high peak flows. The calculated water table depth compared satisfactorily with the measurements. An overall comparison with the earlier results of tracer studies indicated that the modelled contribution of direct rainfall/snowmelt in streamflow was higher than the isotopically traced fraction of event-water in runoff. The seasonal variation in the modelled runoff-contributing areas was similar to that in the event-water-contributing areas from the tracer analysis.


2000 ◽  
Vol 4 (1) ◽  
pp. 79-93 ◽  
Author(s):  
E. Sauquet ◽  
I. Krasovskaia ◽  
E. Leblois

Abstract. Runoff generation in a forested catchment (0.18 km2) was simulated using a quasi-three-dimensional rainfall-runoff model. The model was formulated over a finite grid where water movement was assumed to be dominantly vertical in the unsaturated soil zone and horizontal in the saturated soil. The vertical soil moisture distribution at each grid cell was calculated using a conceptual approximation to the one-dimensional Richards equation. The approximation allowed the use of a simple soil surface boundary condition and an efficient solution to the water table elevation over the finite grid. The approximation was coupled with a two-dimensional ground water model to calculate lateral soil water movement between the grid cells and exfiltration over saturated areas, where runoff was produced by the saturation-excess mechanism. Runoff was an input to a channel network, which was modelled as a nonlinear reservoir. The proposed approximation for the vertical soil moisture distribution in unsaturated soil compared well to a numerical solution of the Richards equation during shallow water table conditions, but was less satisfactory during prolonged dry periods. The simulation of daily catchment outflow was successful with the exception of underprediction of extremely high peak flows. The calculated water table depth compared satisfactorily with the measurements. An overall comparison with the earlier results of tracer studies indicated that the modelled contribution of direct rainfall/snowmelt in streamflow was higher than the isotopically traced fraction of event-water in runoff. The seasonal variation in the modelled runoff-contributing areas was similar to that in the event-water-contributing areas from the tracer analysis.


2009 ◽  
Vol 10 (1) ◽  
pp. 308-319 ◽  
Author(s):  
Xubin Zeng ◽  
Mark Decker

Abstract The soil moisture–based Richards equation is widely used in land models for weather and climate studies, but its numerical solution using the mass-conservative scheme in the Community Land Model is found to be deficient when the water table is within the model domain. Furthermore, these deficiencies cannot be reduced by using a smaller grid spacing. The numerical errors are much smaller when the water table is below the model domain. These deficiencies were overlooked in the past, most likely because of the more dominant influence of the free drainage bottom boundary condition used by many land models. They are fixed here by explicitly subtracting the hydrostatic equilibrium soil moisture distribution from the Richards equation. This equilibrium distribution can be derived at each time step from a constant hydraulic (i.e., capillary plus gravitational) potential above the water table, representing a steady-state solution of the Richards equation. Furthermore, because the free drainage condition has serious deficiencies, a new bottom boundary condition based on the equilibrium soil moisture distribution at each time step is proposed that also provides an effective and direct coupling between groundwater and surface water.


2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Ecohydrology ◽  
2008 ◽  
Vol 1 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Alex J. Rinehart ◽  
Luis A. Méndez-Barroso ◽  
Carlos A. Aragón ◽  
Gautam Bisht ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


Sign in / Sign up

Export Citation Format

Share Document