scholarly journals Heat and mass transfer modelling for storage of food bulk raw materials under active ventilation

Author(s):  
O A Egorova ◽  
G V Alekseev ◽  
I P Yukhnik ◽  
A A Sychev
2020 ◽  
Vol 6 (2) ◽  
pp. 81-87
Author(s):  
Zhanna Petrova ◽  
◽  
Kateryna Samoilenko ◽  
Vitaly Vishnevsky

Red beetroot is the main raw material which has a high content of betanine with antioxidant properties. An important emphasis in the processing of antioxidant raw materials by drying is to reduce energy consumption for the dehydration process, the maximum preservation of biologically active substances, and to reduce the cost of the final product. Drying is a complex and energy-intensive process. Therefore, to optimize energy consumption during drying and selection of rational modes of dehydration, it is necessary to apply the calculated analysis of heat and mass transfer on the basis of adequate mathematical models. Calculated and experimental results are compared. In general, the comparison of the results of numerical modeling of convection drying processes of the red beetroot sample with the experimental results showed their rather satisfactory qualitative agreement. The calculation model can be used to approximate the characteristics of the drying process of red beetroot, in particular the time required for drying. The obtained results of calorimetric studies allow stating that with correctly selected compositions, not only the components of native raw materials are stabilized, but also the drying process is intensified with the reduction of energy consumption to process.


Author(s):  
Kateryna Slobodianiuk ◽  
◽  
Kateryna Samoilenko ◽  

The article presents a reasonable analysis and relevance of the study of the drying process of vegetable raw materials (colloidal capillary-porous materials). Drying is an energy-intensive industrial process that is defined from a technological point of view: on the one hand by heat and moisture exchange between the body surface and the environment, on the other hand by heating the body and transferring moisture inside it due to the form of moisture. One of the most effective ways to increase the shelf life of food is to dry it to equilibrium humidity. Very important are the technological parameters of the drying regimes, which, when used rationally, are able to preserve the biochemical properties and nutrients of the raw material at a high level in the obtained dry product. The study of dehydration of vegetable raw materials is widely practiced around the world, especially in countries such as Germany, France, USA, Argentina, Hungary, Brazil, Poland, Korea, China, Malaysia. However, the obtained processed products lose their biologically active components and nutrients, and the processing process is energy consuming. Therefore, the problem is relevant and needs an effective solution. In this paper, the kinetics of the drying process, thermogravimetric studies and a mathematical model for colloidal capillary-porous materials of plant origin were analyzed. According to the results of the highlighted research, the process of convective drying of colloidal capillary-porous materials was intensified above 21% due to the use of innovative step regimes. The developed beet-rhubarb composition is a colloidal capillary-porous material that stabilizes and protects at the biochemical level betanin of the beet from the effects of temperature during convective drying, has in comparison with the components of the composition lower heat of dehydration and increased thermal-stability. Prolonged high-temperature exposure causes instant complete destruction of sugars, proteins and other nutrients components. Derivatographic studies have confirmed that the use of the temperature range of 100 ° C in a stepwise mode of 100/60 ° C for the developed soybean-spinach composition is safe for biologically active substances and it is justified by experimental temperature curves. Numerical modeling of heat and mass transfer during convective drying of crushed beets and crushed soybeans using the known model by A.V. Lykov satisfactorily describes the process and can be used to model the convection drying of colloidal capillary-porous materials.


2021 ◽  
Author(s):  
Mohammad U.H. Joardder ◽  
Washim Akram ◽  
Azharul Karim

2021 ◽  
Vol 640 (6) ◽  
pp. 062019
Author(s):  
G V Alekseev ◽  
B A Voronenko ◽  
I P Yukhnik ◽  
O A Egorova ◽  
A A Derkanosova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document