scholarly journals The effects of nano inorganic fertilizer application on rice (Oryza sativa L) productivity

2021 ◽  
Vol 648 (1) ◽  
pp. 012197
Author(s):  
T Rostaman ◽  
H Wibowo ◽  
Nurjaya
2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Helen Grace Guillermo Sebastian

A field experiment was conducted once at Isabela State University, Jones, Isabela, Philippines during the wet season of 2018 to determine the impact of seaweed extract added with varying levels of inorganic fertilizer on the growth and yield of upland rice (Oryza sativa L.) cultivars. In the study, five fertilizer levels and a farmer’s practice as a control combined with seaweed extract was used. The study used Randomized Blocks in a Factorial Scheme with six treatments replicated thrice as follows: Factor A: V1-Pinilisa, V2-Palawan and Factor B: F1-150-100 kg NP ha-1 (Farmer’s Practice), F2-40-10 kg NP ha-1 (100% Recommended Rate), F3-20-5 kg NP ha-1 (50% Recommended Rate), F4-40-10 kg NP ha-1 + 3 L/ha. Seaweed extract, F5-20-5 kg NP ha-1 + 3 L/ha. Seaweed extract and F6-3L/ha. Seaweed Extract. The findings revealed that seaweed extract combined with inorganic fertilizer application influenced the growth and yield of rice. Pinilisa cultivar obtained a higher yield compared to the Palawan cultivar. The combination of seaweed extract and inorganic fertilizer shows highly significant differences especially concerning the number of productive tillers, filled grains, 1000 grain weight and straw weight. The return on investment showed that Pinilisa cultivar fertilized with 3 L seaweed extract is more economical in upland rice obtaining the highest with 95.47%. Seaweed extract as foliar fertilizer can be applied not only in rice but also in other crops. Application of seaweed extract on rice can reduce the amount of fertilizers.


2021 ◽  
Vol 17 (2) ◽  
pp. 390-403
Author(s):  
Dinesh Pandey ◽  
Anjum Ahmad ◽  
J.K. Chauhan ◽  
N. Pandey

An experiment was carried out during the Kharif 2002 and 2003, to study the productivity and nutrient use efficiency of hybrid rice (Oryza sativa L.) in response to integrated use of organic and inorganic sources of nutrients at Research farm, IGAU, Raipur (CG). In all 12 treatments, comprising of different N, P and K levels and its conjunction with organic fertilizers were laid out in Randomized Block Design with 3 replications. The results revealed that application of inorganic fertilizer level of 150:80:60 kg NPK ha-1 significantly increased number of active leaf, leaf area, leaf area index and dry matter accumulation at later stages as compared to lower level of inorganic fertilizer. The conjunction of 100:60:40 kg NPK ha-1 along with PM or N blended with CDU found to be equally effective to that of inorganic fertilizer level of 150:80:60 kg NPK ha-1 for above growth parameters. The chlorophyll content during crop period under above level was the highest under said treatment. The highest crop growth rate was observed between 60-90 DAT followed by 90 DAT-harvest and 30-60 DAT, respectively. The per day accumulation of dry matter during 60-90 DAT period was almost three to four times of that accumulated during 30-60 DAT. Thereafter growth rate almost declined till maturity during both the years.The increased concentration of N at different growth stages and its uptake by plant helped in increasing the yield components and grain yield. The critical analysis of grain yield observations revealed that conjunction of lower levels of inorganic fertilizer (100:60:40 or 50:30:20 kg NPK ha-1) along with CDU or PM gave the saving of 50 kg N, 20 kg P and 20 kg K ha-1 for the cultivation of hybrid rice. Moreover, the higher buildup of available N and K has been also observed under said combination of organic and inorganic fertilizer treatments. The application of 150:80:60 kg NPK ha-1 along with PSB gave the highest buildup of available phosphorus. Inorganic level of 150:80:60 kg NPK ha-1 gave the highest production efficiency and productivity rating index, which was followed by application of inorganic fertilizer of 100:60:40 kg NPK ha-1 along with PM and blending of N with CDU, respectively. The application inorganic fertilizer of 50:30:20 kg NPK ha-1 + PM gave the highest nutrient efficiency during both the years. The highest input cost, net profit and per rupee investment was found under 150:80:60 kg NPK ha-1 followed by application of 100:60:40 kg NPK ha-1 along with PM.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Sution Sution ◽  
Agus Suryanto ◽  
Mudji Santoso

The aim is to determine the optimum combination of inorganic fertilizer and organic materials for increasing the productivity of rice crop (Oryza sativa L.). The experiment was conducted in February- June 2015 in Kebadu, Sanggau, West Kalimantan, Indonesia. The study area was located at 00°0.08,785’N north latitude and 110°0.07,175’E east longitude with ultisol soil; the altitude is 32 m above sea level, rainfall level ranges between 185-267 mm month-1, and the solar radiation is 375.49- 452.58 cal cm-2 day-1. This study used a factorial randomized block design. The first factor was the inorganic fertilization (without fertilizer, inorganic fertilizer 50%, 100%, and 150%) and the second factor was the addition of organic materials (EM4 2 l ha-1, chicken manure 2 t ha-1, and manure 2 t ha-1 + EM4 2 l ha-1). Results showed that the application of chicken manure and a combination of chicken manure+EM4 could reduce the need for inorganic fertilizer NPK by up to 50% with productivity that ranged from 4.18-4.20 t ha-1; this is relatively similar to 100% and 150% inorganic fertilizer NPK, and can increase the harvest by up to 68% compared to the no-NPK inorganic fertilizer.


2019 ◽  
Vol 1 (3) ◽  
pp. 295-306
Author(s):  
Atrisina Allamah ◽  
Hapsoh Hapsoh ◽  
Wawan Wawan ◽  
Isna Rahma Dini

Limitations of productive land causing agricultural extension leads on marginal land. Peatlands are one type of land including the criteria for marginal land. Destruction of peatland ecosystems arising from land management and the selection of one commodity which is not in accordance with the characteristics of peatland. Damage criteria peat in government regulations to function cultivation is more than 0,4 m below the peat surface. One alternative for the agricultural development of peatlands associated with groundwater levels ≤0,4 m to do with the development of food crops, especially rice crops. This is because the root system of the rice crop is only about 40-50 cm categorized shallow roots, thus suitable for development on peatland shallow. This study aims to determine the response growth and yield of rice plants with organic and inorganic fertilizer application by microbial cellulolytic on peat soil. The experimental was conducted from November 2017 to January 2018 in Laboratory of Soil Science and Plant Laboratory, Faculty of Agriculture at Universitas of Riau. The research was conducted using a completely randomized design (CRD), which consists of 7 treatments and 4 replicates so on May 28 experimental units. As for the treatment Control, 50% inorganic fertilizer, 100% inorganic fertilizer, 80 grams of composted rice straw, 160 grams of litter rice straw + 160 ml consortium of microbes, 80 grams of composted rice straw + 50% inorganic fertilizer, 160 grams of rice straw litter + 160 ml of microbial consortium selulitik + 50% inorganic fertilizer. The results showed that addition of 160 g of rice straw litter + 160 ml of microbial + 50% inorganic fertilizer consortium was the best treatment by producing tillers reaching 54,87 tillers, the number of grain per panicle reached 130.57 grains with crop grain weight reaching 57.27 grams, with a percentage of empty the lowest is 3.62%.


Sign in / Sign up

Export Citation Format

Share Document