scholarly journals Study on Axial Compression Performance of GFRP Tube Reactive Power Concrete Composite Short Columns with Encased Steel

2021 ◽  
Vol 676 (1) ◽  
pp. 012063
Author(s):  
Jing Ji ◽  
Huayu Song ◽  
Liangqin Jiang ◽  
Li Jiang
2021 ◽  
Vol 272 ◽  
pp. 02028
Author(s):  
Xiaoya Li ◽  
Renbo Zhang ◽  
Liu Jin ◽  
Xiuli Du

The bearing capacity and durability of reinforced concrete (RC) structures can be affected by fire. In this study, a three-dimensional (3D) meso-scale simulation model for RC short column subjected to axial compression after exposure to fire was established. The degradation effect of mechanical properties of steel bars and concrete materials after high temperature was taken into account. The bond-slip behavior between longitudinal steel bars and concrete was also considered in the model. Based on the present simulation method, the failure mode and failure mechanism of the RC short columns were investigated. Moreover, the effects of fire scenario and fire duration on the axial compression performance of RC short columns were further investigated. It is found that the meso-scale numerical model can effectively simulate the mechanical behavior of RC short columns under axial load. Moreover, with the increase of fired surfaces and fire duration, the peak bearing capacity, axial compression stiffness and ductility decrease. The mechanical properties of short columns decrease more quickly under non-uniform fire. By comparing the theoretical value with the numerical simulation value of Nut/Nu, it is found that the theoretical value is conservative.


2020 ◽  
Author(s):  
T. Siva Sai Hoshitha ◽  
T. Chandrasekhar Rao ◽  
T. D. Gunneswara Rao

2013 ◽  
Vol 790 ◽  
pp. 181-184
Author(s):  
Hai Lun Tong ◽  
Tian Hong Wang ◽  
Jian Qi Lu ◽  
Xin Tang Wang

The post-fire axial compressive behavior of a set of steel fiber reinforced ceramsite concrete filled steel tubular short columns (noted as SFCC-SSC) was experimentally studied. Effect of the maximum value of fire response temperatures of the specimens and some parameters on the axial compression performance of the specimens was especially discussed. The results show that the surface of the steel tubes after fire presented dark red for 700°Cof furnace temperature and orange red for 900°C, and there was no obvious descending segment in post-fire load-displacement curves of the most specimens subjected to fire load. It was concluded that the axial bearing capacity of the specimens aftersuffering the furnace temperature of 900°C is much less than that of the specimens not subjected to fire load, and the volume of steel fiber of 0.5% of has the greatest effect on post-fire bearing capacity of specimens of SFCC-SSC.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1374-1385
Author(s):  
Mizan Ahmed ◽  
Junchang Ci ◽  
Xi-Feng Yan ◽  
Shicai Chen

Sign in / Sign up

Export Citation Format

Share Document