scholarly journals Study on Influence Characteristics of Natural Gas Leakage in Long-distance Pipelines

2021 ◽  
Vol 687 (1) ◽  
pp. 012125
Author(s):  
Cui Ding
2021 ◽  
Author(s):  
Eric Saboya ◽  
Giulia Zazzeri ◽  
Heather Graven ◽  
Alistair J. Manning ◽  
Sylvia Englund Michel
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chengjun Yue ◽  
Li Chen ◽  
Hengbo Xiang ◽  
Linfeng Xu ◽  
Shigang Yang ◽  
...  

Liquefied natural gas (LNG) leaks often lead to cascading accident disasters, including vapor cloud release, explosion, fire, and toxic gas release. The origin and evolution of each accidental disaster must be considered when assessing safety. This paper discusses the safety assessment project of an LNG gas storage station in Xuzhou, China. Multiple conceivable disasters due to the leakage of LNG storage tanks are simulated and analyzed using the computational fluid dynamic software FLACS. We studied different wind speeds interacting with the flammable vapor cloud area and creating frostbite in areas of low temperature. Diffusion simulations of vapor cloud explosion (VCE), thermal radiation, and the distribution of toxic substances were performed. The overpressure-impulse criterion was used to calculate the influence range of VCE. Heat flux, heat dose, and heat flux-heat dose criteria were used to calculate the safe distance for personnel in the event of fire. Based on the calculation results of the three latter criteria, this paper recommends using the heat flux criterion to evaluate fire accidents. The danger zone of each accident was compared. VCE accidents yielded the largest area.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Li Yan–hua ◽  
Feng Hui ◽  
Chi Qiang ◽  
Fei Fan ◽  
Gao Xiong-xiong ◽  
...  

In recent years, many synthetic natural gas demonstration projects have been put into operation all over the world, and hydrogen is usually contained in synthetic natural gas. X80 is the most commonly used high-grade pipeline steel in the construction of natural gas pipelines. The compatibility between high-grade pipeline steel and hydrogen directly affects safety and reliability of long-distance pipelines. Therefore, in order to study the effect of hydrogen content on fatigue properties of high-grade pipeline steel, fatigue specimens were taken from base metal, spiral welds, and girth weld of submerged arc spiral welded pipes, respectively. Specifically, the total pressure was 12 MPa and hydrogen content was from 0 to 5vol%. Experimental results indicate that the hydrogen significantly increases the fatigue crack growth rate for both base metal, spiral weld, and heat-affected zone of X80 pipeline steel for about ten times compared with reference environment nitrogen, hydrogen would greatly reduce the fatigue life of the X80 pipeline steel, and the fatigue lifetime would decrease with the increase in hydrogen volume fraction. In order to ensure the safe operation of SNG pipeline, the hydrogen content should be controlled as low as possible.


Sign in / Sign up

Export Citation Format

Share Document