scholarly journals Experimental Study on Axial Tensile Stress-Strain Relationship of High Crack Resistance Concrete

2021 ◽  
Vol 719 (2) ◽  
pp. 022025
Author(s):  
Limin Wang ◽  
Peiwei Gao ◽  
Yilang Tian ◽  
Chun Yao ◽  
Dongming Hao ◽  
...  
2011 ◽  
Vol 284-286 ◽  
pp. 1969-1973
Author(s):  
Xiao Ling Hu ◽  
Yong Ouyang ◽  
Xiong Zhou ◽  
Wen Bo Luo

The tensile stress-strain relationship of rubbers is fairly linear and can be used for obtaining tensile modulusE. In this work we analyzed the tensile stress-strain relationship of filled rubber experimentally and employed the extended 2D homogenization method to compute the modulus of the carbon black (CB) filled rubbers with various CB volume fractions ranging from 5% to 25%. The results reveal that the modulus of CB-filled rubbers increased with the increase in CB volume fraction and in CB aggregation.


Author(s):  
Jingjing He ◽  
Junping Shi ◽  
Yong Zhang ◽  
Haiting Wang ◽  
Haodan Lu ◽  
...  

2016 ◽  
Vol 43 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Guanghui Zhang ◽  
Xinhu Cao ◽  
Qiuni Fu

Corrosion of steel bars is a serious issue compromising the reliability of reinforced concrete structures. Previous research has proven that confined concrete has increased confined strength, ductility, energy dissipation capacity, etc. However, existing confined concrete models cannot accurately predict the strength and stress–strain relationship of concrete confined with corroded stirrups. This paper presents an experimental study on the behavior of eight square columns confined with stirrups damaged by accelerated chloride corrosion. The weight loss of the stirrup ranges from 5% to 31.7%. The stress–strain curves of confined concrete are obtained from the concentric compression loading tests. Based on the well-established Mander model, modification factors are introduced to account for the effect of corrosion on the confined strength, confined strain, and descending branch of the curves. These modification factors predict the constitutive relationship of concrete confined with square stirrups as a function of the weight loss and localization levels of corrosion.


2013 ◽  
Vol 535-536 ◽  
pp. 574-577 ◽  
Author(s):  
Bo Han ◽  
Hong Jian Liao ◽  
Hang Zhou Li ◽  
Zheng Hua Xiao

This paper mainly concerns the non-linear strength characteristics of the loess. A series of consolidated undrained triaxial tests(CU test) and consolidated drained triaxial tests (CD test) of normal consolidation and over consolidation loess specimens are carried out by using the normal triaxial apparatus of strain control. The stress-strain relationship curves and strength characteristics of loess are investigated and analyzed. The results show that the stress-strain relationship obtained by CU tests appears strain softening, while the stress-strain relationship for CD tests appears strain hardening. Different failure modes have different stress-strain relationships. Furthermore, the results also show that the peak strength, residual strength and residual strength ratio change with the different confining pressure. Based on the triaxial shear tests of normal consolidated loess, the influences of over-consolidated loess on the stress-strain relationships and strength characteristic are discussed. Several conclusions obtained in this paper can be referenced for the loess experimental study.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


Sign in / Sign up

Export Citation Format

Share Document