scholarly journals A review on immobilization strategy of cyclodextrin glucanotransferase producing Escherichia coli as whole cell biocatalyst

2021 ◽  
Vol 765 (1) ◽  
pp. 012002
Author(s):  
A A Abdullah ◽  
N Z F N Azam ◽  
C W S R Mohamad ◽  
R M Illias
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jinghui Xiong ◽  
Hefeng Chen ◽  
Ran Liu ◽  
Hao Yu ◽  
Min Zhuo ◽  
...  

Abstractε-Caprolactone is a monomer of poly(ε-caprolactone) which has been widely used in tissue engineering due to its biodegradability and biocompatibility. To meet the massive demand for this monomer, an efficient whole-cell biocatalytic approach was constructed to boost the ε-caprolactone production using cyclohexanol as substrate. Combining an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO) in Escherichia coli, a self-sufficient NADPH-cofactor regeneration system was obtained. Furthermore, some improved variants with the better substrate tolerance and higher catalytic ability to ε-caprolactone production were designed by regulating the ribosome binding sites. The best mutant strain exhibited an ε-caprolactone yield of 0.80 mol/mol using 60 mM cyclohexanol as substrate, while the starting strain only got a conversion of 0.38 mol/mol when 20 mM cyclohexanol was supplemented. The engineered whole-cell biocatalyst was used in four sequential batches to achieve a production of 126 mM ε-caprolactone with a high molar yield of 0.78 mol/mol.


2014 ◽  
Vol 107 ◽  
pp. 39-46 ◽  
Author(s):  
Wei-rui Zhao ◽  
Jun Huang ◽  
Chun-long Peng ◽  
Sheng Hu ◽  
Pi-yu Ke ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1184 ◽  
Author(s):  
Kim ◽  
Baritugo ◽  
Oh ◽  
Kang ◽  
Jung ◽  
...  

Cadaverine is a C5 diamine monomer used for the production of bio-based polyamide 510. Cadaverine is produced by the decarboxylation of l-lysine using a lysine decarboxylase (LDC). In this study, we developed recombinant Escherichia coli strains for the expression of LDC from Hafnia alvei. The resulting recombinant XBHaLDC strain was used as a whole cell biocatalyst for the high-level bioconversion of l-lysine into cadaverine without the supplementation of isopropyl β-d-1-thiogalactopyranoside (IPTG) for the induction of protein expression and pyridoxal phosphate (PLP), a key cofactor for an LDC reaction. The comparison of results from enzyme characterization of E. coli and H. alvei LDC revealed that H. alvei LDC exhibited greater bioconversion ability than E. coli LDC due to higher levels of protein expression in all cellular fractions and a higher specific activity at 37 °C (1825 U/mg protein > 1003 U/mg protein). The recombinant XBHaLDC and XBEcLDC strains were constructed for the high-level production of cadaverine. Recombinant XBHaLDC produced a 1.3-fold higher titer of cadaverine (6.1 g/L) than the XBEcLDC strain (4.8 g/L) from 10 g/L of l-lysine. Furthermore, XBHaLDC, concentrated to an optical density (OD600) of 50, efficiently produced 136 g/L of cadaverine from 200 g/L of l-lysine (97% molar yield) via an IPTG- and PLP-free whole cell bioconversion reaction. Cadaverine synthesized via a whole cell biocatalyst reaction using XBHaLDC was purified to polymer grade, and purified cadaverine was successfully used for the synthesis of polyamide 510. In conclusion, an IPTG- and PLP-free whole cell bioconversion process of l-lysine into cadaverine, using recombinant XBHaLDC, was successfully utilized for the production of bio-based polyamide 510, which has physical and thermal properties similar to polyamide 510 synthesized from chemical-grade cadaverine.


RSC Advances ◽  
2018 ◽  
Vol 8 (53) ◽  
pp. 30512-30519 ◽  
Author(s):  
Jian-Xiu Li ◽  
Yan-Yan Huang ◽  
Xian-Rui Chen ◽  
Qi-Shi Du ◽  
Jian-Zong Meng ◽  
...  

Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration systems.


Sign in / Sign up

Export Citation Format

Share Document