regeneration systems
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 5)

Author(s):  
Mike Premer ◽  
Robert E. Froese

In naturally regenerated managed forests, silvicultural methods leverage timing and intensity of harvesting activities to align with species-specific reproduction mechanisms. With contemporary emphasis on complex stand structure and diverse composition, there is uncertainty in the continued use of timber-oriented management practices in meeting evolving objectives. In the northern hardwood region of North America, selection regeneration systems are assumed to result in homogenization of structure and composition through increasing dominance of Acer saccharum Marsh. Given the coupling of soils and vegetation in northern hardwoods, trends in site conditions that may be more resilient/facilitative to community diversity may be of value to silviculturists. Remote sensing products and inventory records were integrated to assess tree communities across site variables in northern Michigan, USA. Results reveal that composition is stabilized by local landforms and diversity increases with hydrologic catchment area. Time since treatment (0-54 years) appeared negatively correlated with catchment area, suggesting lowlands with high diversity are not managed or harvested infrequently, reflecting equipment access and operational logistics. Broad interpretations of selection regeneration systems may be invalidated by the influence of site conditions not previously accounted for, and results highlight a novel technique to capture the effect of topography on species assemblages.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 171
Author(s):  
Imran Farooq ◽  
Amr Bugshan

Human enamel once formed cannot be biologically repaired or replaced. Saliva has a significant role in remineralization of dental enamel. It not only has a buffering capacity to neutralize the oral cavity’s low pH generated after acidic encounters, but also acts as a carrier of essential ions, such as fluoride, calcium and phosphate, which have a positive role in enamel’s remineralization. This review discusses how salivary contents, like proteins and enzymes, have a natural role in enamel’s mineralization. In addition, the presence of ions, such as fluoride, calcium and phosphate, in saliva further enhances its capability to remineralize the demineralized enamel surface. The review further examines modern innovative technologies, based on biomimetic regeneration systems, including dentin phosphoproteins, aspartate-serine-serine, recombinant porcine amelogenin, leucine-rich amelogenin peptide and nano-hydroxyapatite, that promote enamel remineralization. Fluoride boosters like calcium phosphates, polyphosphates, and certain natural products can also play an important role in enamel remineralization.


Author(s):  
Mariana Neves ◽  
Sandra Correia ◽  
Carlos Cavaleiro ◽  
Jorge Canhoto

Ethylene is a plant hormone controlling physiological and developmental processes such fruit maturation, hairy root formation and leaf abscission. Its effect on regeneration systems, such as organogenesis and somatic embryogenesis (SE), has been studied and progresses in molecular biology techniques have contributed to unveil mechanisms behind its effects. This compound affects regeneration differently, depending on the species, genotype and explant. In some species, ethylene seems to revert recalcitrance in genotypes with low regeneration capacity. However, its effect is not addictive, since in genotypes with high regeneration capacity this ability decreases in the presence of ethylene precursors, suggesting that regeneration is modulated by ethylene. Several lines of evidence have shown that the role of ethylene on regeneration is markedly connected to biotic and abiotic stresses as well as to hormonal-crosstalk, in particular with key regeneration hormones and growth regulators of the auxin and cytokinin families. Transcriptional factors of the ethylene response factor (ERF) family are regulated by ethylene and strongly connected to SE induction. Thus, an evident connection between ethylene, stress responses and regeneration capacity is markedly established. In this review the effect of ethylene and the way it interacts with other players during organogenesis and somatic embryogenesis is discussed.


2021 ◽  
pp. 275-296
Author(s):  
Jiafu Shi ◽  
Yizhou Wu ◽  
Zhongyi Jiang ◽  
Yiying Sun ◽  
Qian Huo ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 715
Author(s):  
Aline Kadri ◽  
Ghislaine Grenier De March ◽  
François Guerineau ◽  
Viviane Cosson ◽  
Pascal Ratet

The induction of plant somatic embryogenesis is often a limiting step for plant multiplication and genetic manipulation in numerous crops. It depends on multiple signaling developmental processes involving phytohormones and the induction of specific genes. The WUSCHEL gene (WUS) is required for the production of plant embryogenic stem cells. To explore a different approach to induce somatic embryogenesis, we have investigated the effect of the heterologous ArabidopsisWUS gene overexpression under the control of the jasmonate responsive vsp1 promoter on the morphogenic responses of Medicago truncatula explants. WUS expression in leaf explants increased callogenesis and embryogenesis in the absence of growth regulators. Similarly, WUS expression enhanced the embryogenic potential of hairy root fragments. The WUS gene represents thus a promising tool to develop plant growth regulator-free regeneration systems or to improve regeneration and transformation efficiency in recalcitrant crops.


EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tyler A. Square ◽  
Shivani Sundaram ◽  
Emma J. Mackey ◽  
Craig T. Miller

AbstractBackgroundVertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a ‘lamina-less’ tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues.ResultsIn the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1,andpitx2), while active Wnt signaling andLef1expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a,Bmp6,CD34,Gli1,Igfbp5a,Lgr4,Lgr6,Nfatc1, andPitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally expressLef1and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration.ConclusionsWe propose that the expression domains described here delineate a highly conserved “successional dental epithelium” (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242109
Author(s):  
Clifford S. Morrison ◽  
Elena E. Paskaleva ◽  
Marvin A. Rios ◽  
Thomas R. Beusse ◽  
Elaina M. Blair ◽  
...  

Electrochemical bioreactor systems have enjoyed significant attention in the past few decades, particularly because of their applications to biobatteries, artificial photosynthetic systems, and microbial electrosynthesis. A key opportunity with electrochemical bioreactors is the ability to employ cofactor regeneration strategies critical in oxidative and reductive enzymatic and cell-based biotransformations. Electrochemical cofactor regeneration presents several advantages over other current cofactor regeneration systems, such as chemoenzymatic multi-enzyme reactions, because there is no need for a sacrificial substrate and a recycling enzyme. Additionally, process monitoring is simpler and downstream processing is less costly. However, the direct electrochemical reduction of NAD(P)+ on a cathode may produce adventitious side products, including isomers of NAD(P)H that can act as potent competitive inhibitors to NAD(P)H-requiring enzymes such as dehydrogenases. To overcome this limitation, we examined how nature addresses the adventitious formation of isomers of NAD(P)H. Specifically, renalases are enzymes that catalyze the oxidation of 1,2- and 1,6-NAD(P)H to NAD(P)+, yielding an effective recycling of unproductive NAD(P)H isomers. We designed several mutants of recombinant human renalase isoform 1 (rhRen1), expressed them in E. coli BL21(DE3) to enhance protein solubility, and evaluated the activity profiles of the renalase variants against NAD(P)H isomers. The potential for rhRen1 to be employed in engineering applications was then assessed in view of the enzyme’s stability upon immobilization. Finally, comparative modeling was performed to assess the underlying reasons for the enhanced solubility and activity of the mutant enzymes.


2020 ◽  
Author(s):  
Tyler A. Square ◽  
Shivani Sundaram ◽  
Emma J. Mackey ◽  
Craig T. Miller

AbstractBackgroundVertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a ‘lamina-less’ tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues.ResultsIn the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago, and demonstrate some stark differences in dental morphology and regeneration. Here we find that the successional dental lamina in zebrafish sharply upregulates Wnt signaling and Lef1 expression during early morphogenesis stages of tooth development. Additionally, the naïve zebrafish successional dental lamina expresses a battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2). We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, new tooth germs also sharply upregulate Wnt signaling and Lef1 expression, and additionally express the same battery of nine genes in the basalmost endodermal cell layer from which replacement tooth epithelia arise. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration.ConclusionsWe propose that the expression domains described here delineate a highly conserved “successional dental epithelium” (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.


Author(s):  
Wenfa Ng

Although cofactor regeneration is an established system in biocatalysis, work remains in developing new and alternative cofactor regeneration systems with greater efficiency, ease of use, and higher atom economy. In addition, cofactor regeneration system only works if the cofactor regeneration reaction operates at similar kinetics compared to the biotransformation reaction. This meant that only specific cofactor regeneration system is capable of coupling with particular biotransformation reaction. This then leaves open the field for the development of a plethora of alternative cofactor regeneration systems each capable of coupling with different biotransformation reaction of different kinetics. This short write-up examines the possibility of tapping on the NADH regenerated from a two-step ethylene glycol utilization pathway. Current knowledge suggests that this angle has not been explored; thereby, opening up possibilities for future experimental investigations into the feasibility of coupling ethylene glycol utilization pathway with biotransformation reaction as a coupled cofactor regeneration system.


Sign in / Sign up

Export Citation Format

Share Document