scholarly journals Kinematics modeling and workspace analysis of large offshore trestle based on wave compensation

2021 ◽  
Vol 769 (3) ◽  
pp. 032045
Author(s):  
Xingyao Wang ◽  
Yifan Xue ◽  
Yanjun Liu
2017 ◽  
Vol 41 (5) ◽  
pp. 922-935
Author(s):  
HongJun San ◽  
JunSong Lei ◽  
JiuPeng Chen ◽  
ZhengMing Xiao ◽  
JunJie Zhao

In this paper, a 3-DOF translational parallel mechanism with parallelogram linkage was studied. According to the space vector relation between the moving platform and the fixed base, the direct and inverse position solutions of this mechanism was deduced through analytical method. In addition, the error of the algorithm was analyzed, and the algorithm had turned out to be effective and to have the satisfactory computational precision. On the above basis, the workspace of this mechanism was found through graphical method, which was compared with that of finding through Monte Carlo method, and there was the feasibility for analyzing the workspace of the mechanism by graphical method. The characteristic of the mechanism was analyzed by comparing the results of two analysis methods, which provided a theoretical basis for the application of the mechanism.


2018 ◽  
Vol 232 ◽  
pp. 03057
Author(s):  
Wei Wang ◽  
Yong Xu

Aiming at the requirements of dual robot collaborative operation, a dual robot cooperation system model is established in SolidWorks2012 software to study the dual robot cooperation space. The D-H parameters are established, and the kinematics positive solution equation is obtained. The dual robot cooperative kinematics model is given. Based on the Monte Carlo method, the workspace of the dual robot is solved. The extreme value theory method is used to analyze and calculate, so as to extract the precise boundary contour of the common area of the dual robot workspace, and the collaborative space boundary surface and limit position of the dual robot are determined. The optimal coordinated working space of the dual robot end effector is obtained, which lays a theoretical foundation for the coordinated trajectory planning of the dual robot.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


2015 ◽  
Vol 32 ◽  
pp. 01004
Author(s):  
N. Mamat ◽  
K. Rabenorosoa ◽  
C. Clévy ◽  
P. Lutz ◽  
H. Xie

OCEANS 2009 ◽  
2009 ◽  
Author(s):  
Jan Albiez ◽  
Marc Hildebrandt ◽  
Jochen Kerdels ◽  
Frank Kirchner
Keyword(s):  

2015 ◽  
Vol 35 (2) ◽  
pp. 74-79 ◽  
Author(s):  
Daniel Garcia Sillas ◽  
Efrén Gorrostieta Hurtado ◽  
Emilio Vargas Soto ◽  
Juvenal Rodríguez Reséndiz ◽  
Saúl Tovar Arriaga

<p class="Abstractandkeywordscontent"><span lang="EN-US">Although robotics has progressed to the extent that it has become relatively accessible with low-cost projects, there is still a need to create models that accurately represent the physical behavior of a robot. Creating a completely virtual platform allows us to test behavior algorithms such as those implemented using artificial intelligence, and additionally, it enables us to find potential problems in the physical design of the robot. The present work describes a methodology for the construction of a kinematic model and a simulation of the autonomous robot, specifically of an omni-directional wheeled robot. This paper presents the kinematic model development and its implementation using several tools. The result is a model that follows the kinematics of a triangular omni-directional mobile wheeled robot, which is then tested by using a 3D model imported from 3D Studio</span><span lang="EN-US">®</span><span lang="EN-US"> and Matlab</span><span lang="EN-US">® for the simulation. The environment used for the experiment is very close to the real environment and reflects the kinematic characteristics of the robot.</span></p>


Sign in / Sign up

Export Citation Format

Share Document