scholarly journals Catfish oil supplementation in Bali cattle diet: Effects on rumen fermentation parameters, carboxymethylcellulase and protease activity in vitro

2021 ◽  
Vol 782 (2) ◽  
pp. 022082
Author(s):  
D N Cahyo ◽  
L M Yusiati ◽  
A Kurniawati ◽  
C Hanim ◽  
Muhlisin
2020 ◽  
Vol 73 (6) ◽  
pp. 582-586
Author(s):  
Ravi Prakash Pal ◽  
Veena Mani ◽  
Srobana Sarkar ◽  
Shahid Hassan Mir ◽  
Amit Sharma ◽  
...  

2014 ◽  
Vol 27 (11) ◽  
pp. 1577-1583 ◽  
Author(s):  
Chiedza Isabel Mamvura ◽  
Sangbuem Cho ◽  
David Tinotenda Mbiriri ◽  
Hong-gu Lee ◽  
Nag-Jin Choi

2016 ◽  
Vol 15 (10) ◽  
pp. 897-904 ◽  
Author(s):  
Paulus Klau Tahuk ◽  
Subur Priyono Sa ◽  
Panjono . ◽  
Endang Baliarti

2011 ◽  
Vol 91 (3) ◽  
pp. 433-448 ◽  
Author(s):  
J. M. Castro-Montoya ◽  
H. P. S. Makkar ◽  
K. Becker

Castro-Montoya, J. M., Makkar, H. P. S. and Becker, K. 2011. Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system. Can. J. Anim. Sci. 91: 433–448. Post-rumen chemical composition of the microbial fraction is one of the factors that determines the nutrients absorbed and available for maintenance and production of the animal. The hypothesis was that tannins and saponins alter chemical composition of rumen microbes and fermentation parameters in the rumen. Purified quebracho, mimosa, chestnut and sumach tannins; and quillaja and gypsophilla saponins were incubated with 380 mg of substrate (hay:concentrate 70:30 wt/wt) for 24 h in an in vitro gas production system at concentrations from 0.25 to 1.25 mg mL−1. Saponins increased N and reduced sugar contents of the liquid-associated microbes. The ratio of crude protein to purine bases significantly increased on adding sumach and chestnut tannins and decreased on the addition of quebracho and mimosa tannins. Quebracho, mimosa and chestnut tannins reduced total short-chain fatty acid production. The acetate:propionate ratio decreased for all additives. Results suggest that in vitro (a) depending on the source and the concentration, tannins would have an effect on the nitrogen and sugar contents of the liquid associated microbes, (b) saponins are likely to increase N and reduce sugar contents of rumen liquid associated microbes, and (c) estimation of microbial protein synthesis based on purine bases may lead to under- or over-estimations in the presence of tannins and saponins. In vivo studies are required to validate these results.


2019 ◽  
Vol 72 (05) ◽  
pp. 514-517
Author(s):  
Avinesh Sharma ◽  
Chander Datt ◽  
Ritika Gupta ◽  
Jitendra Kumar ◽  
Shambhvi . ◽  
...  

Author(s):  
Zhenbin Zhang ◽  
Shan Wang ◽  
Ruxin Qi ◽  
Khuram Shahzad ◽  
Liangfeng Shi ◽  
...  

Background: Urtica cannabina, an unconventional forage, is widely distributed in northern China. It has high nutritional values that make it suitable for the ruminant’s feeding requirments as compared to Leymus chinensis. The current study was designed to evaluate varying ratios of Urtica cannabina and Leymus chinensis in the feeding diet and to see the effects on rumen fermentation and gas production in vitro. Methods: The study was designed into five treatments based on the different ratios of U. cannabina and L. chinensis: 0:100, 30:70, 50:50, 70:30 and 100:0 categorized into five groups from A-E. To detect the rumen fermentation parameters, the culture medium was collected at 1, 3, 6, 12 and 24 h. Result: Gas production of groups A and C was increased than other groups at 24h (P less than 0.05), whereas the rate of gas production (c) was also increased in group A (P less than 0.05). The pH values at 1, 3, 6 and 24 h were increased in groups A and C with higher values in group C at 24h (P less than 0.05). The ammonia concentration was increased in groups D and E at 3, 6, 12 and 24 h, with the lower values in group C at 24h (P less than 0.05). The concentration of bacterial and protozoal proteins was also observed higher in groups A and C at 1 and 24 h, with highest value in group C at 24 h (P less than 0.05). In summary, as for Urtica cannabina to Leymus chinensis ratios are concerned, 50:50 is an optimal ratio for rumen fermentation in vitro, which increases the gas production and microbial protein synthesis.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 471-472
Author(s):  
Ana Paula Tarozo ◽  
Annelise Aila G Gomes Lobo ◽  
Yuli Andrea A Peña Bermudez ◽  
Danny Alexander Rojas Moreno ◽  
Rafaela Zuliani Spalato ◽  
...  

Abstract Currently, the use of feed additives appears as an alternative in reducing the environmental impact of animal agriculture, reducing the emission of greenhouse gases and increasing the acceptability of exports in international trade. Thus, the objective of the present study was to evaluate the in vitro rumen fermentation parameters by adding 4.5% ammonium nitrate and 30 ppm of the additive sodium monensin to beef cattle diets, searching for the best alternative to mitigate methane production. The experiment was performed in an in vitro gas production system, and the fermentation kinetics, methanogenesis and short-chain fatty acid (SCFA) production were studied. Regarding methanogenesis, it was observed that the diet with ammonium nitrate showed higher in vitro degradability in DM (P = 0.017) and lower methane production (in ml/g of DM; P = 0.0088), compared to the diet with sodium monensin. Considering the fermentation kinetics, it can be stated that acetate production in molar (%) was lower in control and monensin diets, and higher in nitrate and nitrate + monensin diets (P < 0.0001). It is concluded that both treatments ammonium nitrate + sodium monensin and ammonium nitrate alone have mitigating effect on methane emission, when compared to the control treatment. However, ammonium nitrate is more effective in this regard, producing less methane in vitro and having no negative effect on rumen fermentation parameters.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 157-158
Author(s):  
Nelson Vera ◽  
Sandra Suescun-Ospina ◽  
Rita Astudillo ◽  
Antonia Muñoz ◽  
Rodrigo Allende ◽  
...  

Abstract Replacing synthetic feed additives by plant secondary metabolites (PSM) as essential oils, saponins and tannins has been proposed, due to their potential to reduce methane (CH4) emissions, without adverse effects on ruminal fermentation. This study aimed to evaluate the use of oregano essential oil (OR), quillaja saponin (QS), and quebracho tannin (QT) extracts and their combinations as feed additives on in vitro CH4 production and rumen fermentation parameters. The design was an incomplete factorial arrangement in a randomized complete block with seven treatments using batch culture. Dietary treatments were: control (CON), without plant extracts; OR (0.07% dry matter [DM] basis of the diet); QS (0.05% DM); QT (1.00% DM); and binary combinations QT+QS (1.00 and 0.05% DM, respectively); OR+QS (0.07 and 0.05% DM, respectively); and OR+QT (0.07 and 1.00% DM, respectively). The forage to concentrate ratio was 51:49. Forage was composed of corn silage (42.0%) and perennial ryegrass and white clover hay (9.0%); concentrate was based on high–moisture corn (33.0%), soybean meal (15.0%), vitamin and mineral salt (1%). All combinations decreased the net CH4 and its production (P ≤ 0.038 and P ≤ 0.027, respectively). However, the interaction between QT and QS decreased CH4 yield (P = 0.046), whereas OR and QS interaction, trended to decreased CH4 yield (P = 0.068) and the in vitro DM disappearance (IVDMD; P = 0.055). In contrast, the interaction between OR and QT decreased the IVDMD (P = 0.036). The gas output, partitioning factor and pH, were unaffected (P ≥ 0.066) by PSM, separately or in combinations. The results suggest that QT+QS is the best PSM combination to reduce the amount of CH4 per g DM degraded without adversely impacting rumen fermentation and diet digestibility. Although OR+QT or OR+QS are also an alternative to reduce CH4, its combination may also reduce diet digestibility.


Sign in / Sign up

Export Citation Format

Share Document