296 Effects of Phytogenic Additives Combinations on in vitro Methane Production and Ruminal Fermentation

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 157-158
Author(s):  
Nelson Vera ◽  
Sandra Suescun-Ospina ◽  
Rita Astudillo ◽  
Antonia Muñoz ◽  
Rodrigo Allende ◽  
...  

Abstract Replacing synthetic feed additives by plant secondary metabolites (PSM) as essential oils, saponins and tannins has been proposed, due to their potential to reduce methane (CH4) emissions, without adverse effects on ruminal fermentation. This study aimed to evaluate the use of oregano essential oil (OR), quillaja saponin (QS), and quebracho tannin (QT) extracts and their combinations as feed additives on in vitro CH4 production and rumen fermentation parameters. The design was an incomplete factorial arrangement in a randomized complete block with seven treatments using batch culture. Dietary treatments were: control (CON), without plant extracts; OR (0.07% dry matter [DM] basis of the diet); QS (0.05% DM); QT (1.00% DM); and binary combinations QT+QS (1.00 and 0.05% DM, respectively); OR+QS (0.07 and 0.05% DM, respectively); and OR+QT (0.07 and 1.00% DM, respectively). The forage to concentrate ratio was 51:49. Forage was composed of corn silage (42.0%) and perennial ryegrass and white clover hay (9.0%); concentrate was based on high–moisture corn (33.0%), soybean meal (15.0%), vitamin and mineral salt (1%). All combinations decreased the net CH4 and its production (P ≤ 0.038 and P ≤ 0.027, respectively). However, the interaction between QT and QS decreased CH4 yield (P = 0.046), whereas OR and QS interaction, trended to decreased CH4 yield (P = 0.068) and the in vitro DM disappearance (IVDMD; P = 0.055). In contrast, the interaction between OR and QT decreased the IVDMD (P = 0.036). The gas output, partitioning factor and pH, were unaffected (P ≥ 0.066) by PSM, separately or in combinations. The results suggest that QT+QS is the best PSM combination to reduce the amount of CH4 per g DM degraded without adversely impacting rumen fermentation and diet digestibility. Although OR+QT or OR+QS are also an alternative to reduce CH4, its combination may also reduce diet digestibility.

2019 ◽  
Vol 19 (1) ◽  
pp. 3-29 ◽  
Author(s):  
Saied Jafari ◽  
Mahdi Ebrahimi ◽  
Yong M. Goh ◽  
Mohamed A. Rajion ◽  
Mohamed F. Jahromi ◽  
...  

AbstractA wide range of plant secondary metabolites (PSM) have been shown to have the potential to modulate the fermentation process in the rumen. The use of plants and plant extracts as natural feed additives has become an interesting topic not only among nutritionists but also other scientists. Although a large number of phytochemicals (e.g. saponins, tannins and essential oils) have recently been investigated for their methane (CH4) reduction potential, there have not yet been major breakthroughs that could be applied in practice. However, the effectiveness of these PSM depends on the source, type and the level of their presence in plant products. The aim of the present review was to assess ruminal CH4 emission through a comparison of integrating related studies from published papers, which described various levels of different PSM sources being added to ruminant feed. Apart from CH4, other related rumen fermentation parameters were also included in this review.


Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 451 ◽  
Author(s):  
Pablo Jose Rufino-Moya ◽  
Mireia Blanco ◽  
Sandra Lobón ◽  
Juan Ramon Bertolín ◽  
Ramón Armengol ◽  
...  

Ewes receive hay or graze on fresh pastures supplemented with concentrates to fulfil their lactation requirements. Quebracho (Schinopsis balansae) can be added to change the ruminal fermentation. Fermentation parameters of forages alone and 70:30 forage:concentrate diets with control and quebracho concentrate were compared after 24 h of in vitro incubation. Fresh forage diets produced less gas (p < 0.05) and had greater IVOMD (p < 0.001), ammonia (NH3-N) content, valeric acid, branched-chain volatile fatty acid proportions, and lower propionic acid proportion than the hay diets (p < 0.01). In the hay diets, methane production increased with control concentrate (p < 0.01) and tended to decrease with quebacho concentrate (p < 0.10). The inclusion of both concentrates increased the acetic:propionic ratio (p < 0.01), and only the inclusion of quebracho concentrate increased the IVOMD (p < 0.01). In the fresh forage diets, gas and methane production increased with the inclusion of the control concentrate (p < 0.05), but methane production decreased with quebracho concentrate (p < 0.01). The inclusion of quebracho concentrate reduced the NH3-N content and valeric acid proportion (p < 0.05). In conclusion, the inclusion of quebracho concentrate would be advisable to reduce the CH4 production and NH3-N content in fresh forage diets and to increase the IVOMD in hay diets in comparison with the forages alone.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 289-290
Author(s):  
Sidonie P Robinson ◽  
Kim Ominski ◽  
Karin Wittenberg ◽  
Emma McGeough

Abstract In-vitro batch culture assessment was used to examine DMD, ruminal fermentation parameters and CH4 production associated with a range of by-products feeds including pea hulls, pea screenings, soybean, soybean meal, wheat bran, wheat screenings, wheat DDGS, wheat corn DDGS, corn DDGS, coarse hemp powder, hemp hulls, flax screenings, nexera canola, commodity canola, sunflower screenings, quinoa and dogwood in a randomized complete block design. By-products were obtained from various locations across Manitoba at 3 monthly timepoints to account for sample variability. By-products (0.5g DM) were weighed individually into jars and incubated at 39°C in jars containing buffered medium and rumen fluid for 48 hrs. Gas samples were collected at 3,6,9,12,18,24,36 and 48 hr and CH4, DM disappearance, pH, VFA and ammonia concentrations were measured. Data were analysed using the MIXED procedure of SAS including treatment as a fixed effect and run, block, month and location as random effects. Methane output was regressed on CP and NDF to determine the effect of these constituents. Treatment had a significant effect (P &lt; 0.0001) on CH4 (ml/g DMD) produced, with dogwood having the lowest cumulative CH4 (11.13 ml/g DMD) compared to all other treatments. Methane (ml/g DMD) decreased (P &lt; 0.0005) as pH decreased. An inverse relationship between protein and CH4 was apparent, which explained 31% (R2= 0.31) of the CH4 (ml/g DMD) produced. Further, NDF (%) had a significant effect (P &lt; 0.0001) on CH4 and explained 25% (R2=0.25) of the CH4 (ml/g DMD) produced. Overall, by-products higher in crude protein and lower in NDF produced lower (P &lt; 0.001) CH4 ml/g DMD. Although the addition of dogwood to cattle diets is novel, it does show potential CH4 mitigation potential using in vitro assessment.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 53-54
Author(s):  
Luiz Fernando Dias Batista ◽  
Madeline E Rivera ◽  
Aaron B Norris ◽  
Jordan Adams ◽  
Roberta Cracco ◽  
...  

Abstract The utilization of natural plant secondary compounds as feed additives in animal nutrition has been extensively studied because of their ability to modify digestive and metabolic functions. Condensed tannin (CT) supplementation can potentially alter ruminal fermentation, and mitigate methane (CH4) emissions. The objective of this study was to determine the effect of quebracho CT extract (QT; Schinopsis balansae) within a roughage-based diet on overall fermentability and CH4 production utilizing the in vitro gas production technique (IVGP). Twenty rumen cannulated steers (227 ± 19 kg) were randomly assigned to four dietary treatments (n=4): QT at 0, 1, 2, and 3% of DM (QT0, QT1, QT2, and QT3). A roughage-based diet containing 88% bermudagrass hay and 12% concentrate was fed daily at 2.1% of shrunk body weight. The animals were adapted to the basal diet for 24-d then introduced to predetermined treatments for 35d. Rumen inoculum was collected weekly from each steer to perform the incubations. Two hundred milligrams of air-dried base diet were incubated for 48-h with a composite rumen inoculum for each treatment over 5 wk. Kinetic analysis of cumulative 48h gas production was performed using Gasfit. Measurements of CH4 were performed via gas chromatography and digested residue was determined post-incubation. Data were analyzed using a random coefficients model. Total gas production was higher for QT0 compared to QT1 and QT3 (P = 0.001), but not different from QT2 (P = 0.554). The fractional rate of gas production was higher for QT2 compared to QT0 (P = 0.011). First and second pool gas production decreased linearly as QT inclusion increased (P = 0.042 and 0.010, respectively). There was no dietary effect in ivNDFD (P = 0.567). However, there was a linear tendency to decrease CH4 production with the addition of QT (P=0.071) likely due to changes in the microbial population.


2019 ◽  
Vol 24 (2) ◽  
pp. 68
Author(s):  
Sumudu Chathurika ◽  
Sathya Sujani ◽  
Ariyathilaka Manawadu ◽  
Thakshala Seresinhe

<p class="abstrak2">Recently the utilization of biological feed additives over chemical feed additives in animal feeds have increased. The objective of the present study was to evaluate the effect of supplementing wild guinea grass (panicum maximum) with two plant species, artocarpus heterophyllus (jack leaves; ah) and tridax procumbens (Tp) containing plant secondary metabolites tannin and saponin, respectively and the enzyme product dyadic cellulase (Ce) and yeast (Ye). For each suplement two levels of treatments were tested. In plant-based suplements 20 (Aht1, Tpt1) and 30% (Aht2 and Tpt2) substituted the base substrate. The enzyme was applied as 10 µl (Cet1) and 20 µl (Cet2) and yeast as 4 mg (Yet1) and 6 mg (Yet2). the experimental design was a randomized complete block design (rcbd) and the period of in vitro rumen fermentation incubation was 72 hrs. All treatments significantly (P &lt; 0.05) enhanced the in vitro gas production (Ivgp) compared with the control. Treatments of ah and ce significantly (P &lt; 0.05) improved the in vitro rumen dry matter degradability (ivrdmd). All treatments significantly (P&lt;0.05) suppressed the ruminal protozoa population as compared to the control. Ammonia nitrogen (Nh3-N) production was not significantly (P&gt;0.05) influenced with supplements. in conclusion, treatments enhanced the rumen fermentation in means of enhanced ivgp, ivrdmd and reduced protozoa numbers.</p>


Author(s):  
Amriana Hifizah

Animal production can be more efficient and also sustainable if we reduce CH4 production from ruminal fermentation. One option is to find alternative forages that modify rumen fermentation. CH4 is not only harmful the environment but also means loss to the animals. All of the aspects of the issue is related to the condition of ruminant’s farm in Indonesia. Some other forages that are mainly fed as protein source to ruminants, are: cassava leaves, sweet potato leaves, soya bean leaves, tofu waste, leaves of Artocarpus heterophyllus, Musa paradisiaca L, Ipomea batatas. Roughage sources are hays of Panicum maximum, Pennisetum purpureum, and Setaria sphacelata and the concentrate sources mainly corn, rice bran and cassava waste, and corn cobs. However, there are very limited studies in finding alternative forages that can both increase animals productivity and also reduce CH4 production. Only forages relevant to Indonesia that have been studied in vitro is reviewed in this article, about its potential in reducing CH4 production from rumen fermentation. Even though some forages reduce CH4, it could negatively influence digestibility, hence less productivity. Some studies indicated that it was due to the fat content of the forage while others indicated that the concentration of the bioactive compounds such as condensed tannin influence the side effect of low CH4 ruminal production.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 471-472
Author(s):  
Ana Paula Tarozo ◽  
Annelise Aila G Gomes Lobo ◽  
Yuli Andrea A Peña Bermudez ◽  
Danny Alexander Rojas Moreno ◽  
Rafaela Zuliani Spalato ◽  
...  

Abstract Currently, the use of feed additives appears as an alternative in reducing the environmental impact of animal agriculture, reducing the emission of greenhouse gases and increasing the acceptability of exports in international trade. Thus, the objective of the present study was to evaluate the in vitro rumen fermentation parameters by adding 4.5% ammonium nitrate and 30 ppm of the additive sodium monensin to beef cattle diets, searching for the best alternative to mitigate methane production. The experiment was performed in an in vitro gas production system, and the fermentation kinetics, methanogenesis and short-chain fatty acid (SCFA) production were studied. Regarding methanogenesis, it was observed that the diet with ammonium nitrate showed higher in vitro degradability in DM (P = 0.017) and lower methane production (in ml/g of DM; P = 0.0088), compared to the diet with sodium monensin. Considering the fermentation kinetics, it can be stated that acetate production in molar (%) was lower in control and monensin diets, and higher in nitrate and nitrate + monensin diets (P &lt; 0.0001). It is concluded that both treatments ammonium nitrate + sodium monensin and ammonium nitrate alone have mitigating effect on methane emission, when compared to the control treatment. However, ammonium nitrate is more effective in this regard, producing less methane in vitro and having no negative effect on rumen fermentation parameters.


2015 ◽  
Vol 6 (3) ◽  
pp. 353-360 ◽  
Author(s):  
S.S. Dagar ◽  
N. Singh ◽  
N. Goel ◽  
S. Kumar ◽  
A.K. Puniya

In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.


2020 ◽  
Vol 60 (7) ◽  
pp. 923
Author(s):  
Constanza Gutierrez-Gomez ◽  
Nelson Vera ◽  
Rodrigo Allende ◽  
Pamela Williams ◽  
Rita Astudillo ◽  
...  

Context The use of oilseeds as a feed ingredient has been proposed to improve fatty acid profiles and reduce methane (CH4) emissions. Glycerol has been used as a common additive in ruminant feeding systems with variable effects on CH4 production. The effects of the combination of these ingredients remain unknown. Aims The aim of this study was to assess the effects of feeding linseed and increasing concentrations of glycerol in forage diets supplemented with corn grain on nutrient disappearance, CH4 production and rumen fermentation parameters. Methods Experimental diets were: control (70:30% hay:corn); linseed (70:15 :15% hay:corn:linseed); 5% glycerol (70:10:15:5% hay:corn:linseed:glycerol); 10% glycerol (70:5:15:10% hay:corn:linseed:glycerol). Diets were incubated in a completely randomised design with four replicates per treatment in a Rusitec apparatus for 15 days (10 days adaptation, 5 days sampling). Key results Total VFA production (VFA, mmol/day) was quadratically increased due to glycerol concentration in the diets (P = 0.009). Acetate:propionate (A:P) decreased by the inclusion of linseed (P &lt; 0.001) and glycerol into the diets (P &lt; 0.001). Linseed inclusion in the diet reduced CH4 production, mg/DM disappeared (P = 0.004) by up to 36%. These effects were not altered by the addition of glycerol into the diets. Ammonia nitrogen (NH3-N) production increased 2-fold in the linseed-added diets, but this effect was partially reverted by increasing glycerol concentrations in the diets (P &lt; 0.001). Crude protein (CP) disappearance increased (P &lt; 0.001) in the linseed added diets, with no effect of glycerol addition. Neutral detergent fibre (aNDFom; P = 0.005) disappearance was increased by the addition of linseed to the diet. Conclusions The use of linseed in ruminant diets reduces CH4 emissions but increases NH3-N production in a Rusitec system. This latter effect is partially reverted by glycerol inclusion in the diet. Propionate production increases with the inclusion of glycerol, but does not alter CH4 production. Including linseed increases the in vitro CP disappearance without affecting DM total disappearance. Implications Care should be taken with the use of oilseeds in ruminant diets as it can reduce CH4 emissions but may cause important increases in NH3 emissions. Inclusion of glycerol may partially overcome this latter issue.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 468-468
Author(s):  
Sandra Suescun-Ospina ◽  
Nelson Vera ◽  
Rita Astudillo ◽  
Jorge Avila-Stagno

Abstract Grape marc (GM) is a viticulture by-product used as cattle supplement in periods of shortage of conventional feed sources. It contains fats, high concentrations of polyphenols and has been reported to reduce enteric methane (CH4) emissions. In-vitro batch culture was used to study the effects of substitution of mixed hay (MH) for a traditional Chilean variety (Vitis vinifera “País”) of GM on in vitro dry matter disappearance (IVDMD), rumen fermentation parameters (short chain fatty acids, pH, partitioning factor), gas and CH4 production in a 60% forage diet (dry matter, DM). The study was a randomized complete design with 3 treatments and 3 replicates, incubated for 24 h at 39º C. Treatments were: T1 (Control): 20% MH, 40% corn silage, 40% concentrate; T2 = 10% MH, 10% GM, 40% corn silage, 40% concentrate; T3 = 20% GM, 40% corn silage, 40% concentrate. Means were compared with the Tukey test (P &lt; 0.05), and polynomial contrasts. Substitution of MH with GM significantly reduced ammonia nitrogen (NH3-N) by 50% (P &lt; 0.05), although it did not affect IVDMD, gas production or other rumen fermentation parameters (P &gt; 0.05). Total CH4 (mg) linearly decreased (P = 0.013) as concentrations of GM increased. Methane production (mg/g DM incubated) and yield (mg/g DM digested) decreased linearly (P = 0.002 and P = 0.003, respectively) as inclusion of GM increased. Inclusion of GM at 20% reduced CH4 production by 19% and CH4 yield by 16.4%. These results indicate that partial substitution of dietary fiber sources with traditional Chilean País GM in high fiber diets is a viable feeding alternative, and can decrease environmental impact (lower CH4 and ammonia emissions) of ruminant livestock, without negatively affecting rumen fermentation parameters.


Sign in / Sign up

Export Citation Format

Share Document