scholarly journals Research on regional water demand prediction of the upper and middle reaches of The Pearl River Basin based on system dynamics

2021 ◽  
Vol 784 (1) ◽  
pp. 012003
Author(s):  
Mutao Huang ◽  
Xiaojuan Li ◽  
Jinmeng Wang
2012 ◽  
Vol 440-441 ◽  
pp. 113-122 ◽  
Author(s):  
Qiang Zhang ◽  
Vijay P. Singh ◽  
Juntai Peng ◽  
Yongqin David Chen ◽  
Jianfeng Li

2014 ◽  
Vol 18 (4) ◽  
pp. 1475-1492 ◽  
Author(s):  
J. Niu ◽  
J. Chen ◽  
B. Sivakumar

Abstract. This study explores the teleconnection of two climatic patterns, namely the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in southern China, particularly on a sub-basin-scale basis. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-basins are aggregated. Wavelet analysis is performed to explore the variability properties of these time series at 49 timescales ranging from 2 months to 9 yr. Use of the wavelet coherence and rank correlation method reveals that the dominant variabilities of the time series of runoff and soil moisture are basically correlated with IOD. The influences of ENSO on the terrestrial hydrological processes are mainly found in the eastern sub-basins. The teleconnections between climatic patterns and hydrological variability also serve as a reference for inferences on the occurrence of extreme hydrological events (e.g., floods and droughts).


2019 ◽  
Vol 98 ◽  
pp. 06011
Author(s):  
Xiaoqun Qin ◽  
Zhongcheng Jiang ◽  
Liankai Zhang ◽  
Qibo Huang ◽  
Pengyu Liu

Atmospheric CO2 is absorbed and dissolved in water via karst processes not only in carbonate rock areas, but in all rock areas of the earth. The chemical and isotopic analysis results, particularly of strontium, for water samples collected from eleven stations along the Pearl River, four times over the course of one year, showed that due to weathering by carbonate or silicate rocks, HCO3-, Ca2+, and Mg2+ have become the main ions in the river water. Through river ion stoichiometric and flux calculations, the carbonate rock weathering rate and atmospheric CO2 consumption were found to be 27.6 mm/ka and 540 x 103 mol/km2.a, which are 10.8 and 6.7 times the corresponding values for silicate rock. With the beneficial climatic conditions for rock erosion and large areas of carbonate rock in the Pearl River Basin, the atmospheric CO2 consumption value is about 2.6 times the average value for the 60 major rivers in the world.


2015 ◽  
Vol 30 (7) ◽  
pp. 2031-2040 ◽  
Author(s):  
Yongqin David Chen ◽  
Qiang Zhang ◽  
Mingzhong Xiao ◽  
Vijay P. Singh ◽  
Sheng Zhang

Sign in / Sign up

Export Citation Format

Share Document