scholarly journals Evaluation of noni (Morinda citrifolia) leaves and fruits on methane emission and rumen fermentation parameters in vitro

2021 ◽  
Vol 788 (1) ◽  
pp. 012030
Author(s):  
T M Wardiny ◽  
T E A Sinar ◽  
A Jayanegara
2020 ◽  
Vol 73 (6) ◽  
pp. 582-586
Author(s):  
Ravi Prakash Pal ◽  
Veena Mani ◽  
Srobana Sarkar ◽  
Shahid Hassan Mir ◽  
Amit Sharma ◽  
...  

2014 ◽  
Vol 27 (11) ◽  
pp. 1577-1583 ◽  
Author(s):  
Chiedza Isabel Mamvura ◽  
Sangbuem Cho ◽  
David Tinotenda Mbiriri ◽  
Hong-gu Lee ◽  
Nag-Jin Choi

2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


2011 ◽  
Vol 91 (3) ◽  
pp. 433-448 ◽  
Author(s):  
J. M. Castro-Montoya ◽  
H. P. S. Makkar ◽  
K. Becker

Castro-Montoya, J. M., Makkar, H. P. S. and Becker, K. 2011. Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system. Can. J. Anim. Sci. 91: 433–448. Post-rumen chemical composition of the microbial fraction is one of the factors that determines the nutrients absorbed and available for maintenance and production of the animal. The hypothesis was that tannins and saponins alter chemical composition of rumen microbes and fermentation parameters in the rumen. Purified quebracho, mimosa, chestnut and sumach tannins; and quillaja and gypsophilla saponins were incubated with 380 mg of substrate (hay:concentrate 70:30 wt/wt) for 24 h in an in vitro gas production system at concentrations from 0.25 to 1.25 mg mL−1. Saponins increased N and reduced sugar contents of the liquid-associated microbes. The ratio of crude protein to purine bases significantly increased on adding sumach and chestnut tannins and decreased on the addition of quebracho and mimosa tannins. Quebracho, mimosa and chestnut tannins reduced total short-chain fatty acid production. The acetate:propionate ratio decreased for all additives. Results suggest that in vitro (a) depending on the source and the concentration, tannins would have an effect on the nitrogen and sugar contents of the liquid associated microbes, (b) saponins are likely to increase N and reduce sugar contents of rumen liquid associated microbes, and (c) estimation of microbial protein synthesis based on purine bases may lead to under- or over-estimations in the presence of tannins and saponins. In vivo studies are required to validate these results.


Sign in / Sign up

Export Citation Format

Share Document