scholarly journals Intelligent Identification of Convective Cloud Cores and Surrounding Stratiform Clouds

2021 ◽  
Vol 831 (1) ◽  
pp. 012030
Author(s):  
Song Wenting
2020 ◽  
Vol 20 (2) ◽  
pp. 67-78
Author(s):  
Adi Mulsandi ◽  
Mamenun Mamenun ◽  
Lutfi Fitriano ◽  
Rahmat Hidayat

Intisari Permasalahan utama dalam mengestimasi curah hujan menggunakan data satelit adalah kegagalan membedakan antara awan cumuliform dengan awan stratiform dimana dapat menyebabkan nilai estimasi hujan under/overestimate. Dalam penelitian ini teknik estimasi curah hujan berbasis satelit yang digunakan adalah modifikasi Convective Stratiform Technique (CSTm). CSTm memiliki kelemahan ketika harus menghitung sistem awan konveksi dengan inti konveksi yang sangat luas karena akan memiliki nilai slope parameter kecil, sehingga menghasilkan estimasi curah hujan yang underestimate. Dengan melibatkan perhitungan faktor pertumbuhan awan di algoritma CSTm permasalahan tersebut dapat diatasi. Penelitian ini menerapkan algoritma CSTm dan faktor pertumbuhan awan (CSTm+Growth Factor) untuk mengestimasi kejadian hujan lebat yang menyebabkan banjir di Jakarta pada tanggal 24 Januari 2016 yang digunakan juga sebagai studi kasus di proyek pengembangan model NWP di BMKG. Hasil penelitian menunjukan bahwa perlibatan faktor pertumbuhan awan sangat efektif memperbaiki kelemahan teknik CSTm, diperlihatkan dengan peningkatan nilai korelasi dari 0.6 menjadi 0.8 untuk wilayah Kemayoran dan -0.1 menjadi 0.83 untuk wilayah Cengkareng. Secara umum gabungan teknik CSTm dan faktor pertumbuhan awan dapat memperbaiki estimasi nilai intensitas dan fase hujan. Abstract  The main problem in estimating rainfall using satellite data is a failure to distinguish between cumuliform and stratiform clouds, which can cause under/overestimate of rains. In this research, the Modified Convective Stratiform Technique (CSTm) has been used to estimate rainfall based on satellite data. The weakness of the CSTm technique is defined when calculating the convective cloud system within a widely convective point. Cloud convective will have a low value of parameter slope and produce an underestimate of rainfall. This issue can be resolved by calculating the cloud growth factor on CSTm. CSTm algorithm and cloud growth factor (CSTm+Growth Factor) has been applied to this research to estimate heavy rainfall for floods event in Jakarta area on January 24th, 2016. The result showed that the cloud growth factor is very effective in improving the weakness of rainfall estimation using the CSTm technique. Correlation between estimation and observation rainfall has increased from 0,6 to 0,8 on Kemayoran and from -0,1 to 0,83 on Cengkareng. The coupled method of CSTm and cloud growth factor significantly improve in estimating phase and intensity of rainfall.


2018 ◽  
Author(s):  
Reuven H. Heiblum ◽  
Lital Pinto ◽  
Orit Altaratz ◽  
Guy Dagan ◽  
Ilan Koren

Abstract. The effects of aerosol on warm convective cloud cores are evaluated using single cloud and cloud field simulations. As presented in Part I, the Bcore ⊆ RHcore ⊆ Wcore property is seen during growth of warm convective clouds. We show that this property is kept irrespective of aerosol concentration. During dissipation core fractions generally decrease with less overlap between cores. However, for clouds that develop in low aerosol concentrations capable of producing precipitation, Bcore and subsequently Wcore volume fractions may increase during dissipation (i.e. loss of cloud mass). The RHcore volume fraction decreases during cloud lifetime and shows minor sensitivity to aerosol concentration. It is shown that a Bcore forms due to two processes: (i) Convection – condensation within supersaturated updrafts and release of latent heat, (ii) Adiabatic heating due to weak downdrafts. The former process occurs during cloud growth for all aerosol concentrations. The latter process only occurs for low aerosol concentrations during dissipation and precipitation stages where large mean drop sizes permit slow evaporation rates. The aerosol effect on the diffusion efficiencies play a crucial role in the development of the cloud and its partition to core and margin. Using the RHcore definition, it is shown that the total cloud mass is mostly dictated by core processes, while the total cloud volume is mostly dictated by margin processes. Increase in aerosol concentration increases the core (mass and volume) due to enhanced condensation but also decreases the margin due to evaporation. In clean clouds larger droplets evaporate much slower, enabling preservation of cloud volume and even increase by dilution (detrainment while losing mass). This explains how despite having smaller cores and less mass, cleaner clouds may live longer and grow to larger sizes.


2019 ◽  
Vol 19 (16) ◽  
pp. 10739-10755 ◽  
Author(s):  
Reuven H. Heiblum ◽  
Lital Pinto ◽  
Orit Altaratz ◽  
Guy Dagan ◽  
Ilan Koren

Abstract. The effects of aerosol on warm convective cloud cores are evaluated using single cloud and cloud field simulations. Three core definitions are examined: positive vertical velocity (Wcore), supersaturation (RHcore), and positive buoyancy (Bcore). As presented in Part 1 (Heiblum et al., 2019), the property Bcore⊆RHcore⊆Wcore is seen during growth of warm convective clouds. We show that this property is kept irrespective of aerosol concentration. During dissipation core fractions generally decrease with less overlap between cores. However, for clouds that develop in low aerosol concentrations capable of producing precipitation, Bcore and subsequently Wcore volume fractions may increase during dissipation (i.e., loss of cloud mass). The RHcore volume fraction decreases during cloud lifetime and shows minor sensitivity to aerosol concentration. It is shown that a Bcore forms due to two processes: (i) convective updrafts – condensation within supersaturated updrafts and release of latent heat – and (ii) dissipative downdrafts – subsaturated cloudy downdrafts that warm during descent and “undershoot” the level of neutral buoyancy. The former process occurs during cloud growth for all aerosol concentrations. The latter process only occurs for low aerosol concentrations during dissipation and precipitation stages where large mean drop sizes permit slow evaporation rates and subsaturation during descent. The aerosol effect on the diffusion efficiencies plays a crucial role in the development of the cloud and its partition to core and margin. Using the RHcore definition, it is shown that the total cloud mass is mostly dictated by core processes, while the total cloud volume is mostly dictated by margin processes. Increase in aerosol concentration increases the core (mass and volume) due to enhanced condensation but also decreases the margin due to evaporation. In clean clouds larger droplets evaporate much slower, enabling preservation of cloud size, and even increase by detrainment and dilution (volume increases while losing mass). This explains how despite having smaller cores and less mass, cleaner clouds may live longer and grow to larger sizes.


MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 35-48
Author(s):  
S.BALAJI KUMAR ◽  
K.KRISHNA REDDY

Hkkjr ds vkU/kz izns’k jkT; ds v/kZ'kq"d HkwHkkx] dM+ik ¼14-47 fMxzh m-] 78-82 fMxzh iw- ½ esa yxk, x, d.k ds vkdkj vkSj osx ¼ikjohosy½ okys fMLMªksehVj l ‘ty’ pØokr ls mRiUu o"kZ.k es?kksa ¼07 uoEcj 2010½ rFkk mRrj iwoZ ¼,u- bZ-½ ekulwu xtZ okys rwQku ds o"kZ.k es?kksa ¼16 uoEcj 2010½ ds cw¡n ds vkdkj ds forj.kksa ¼vkj- ,l- Mh-½ dks ekik x;k gSA izs{k.kkRed ifj.kkeksa ls gesa ;g irk pyk gS fd pØokr dh otg ls mRiUu o"kZ.k es?kksa esa laoguh o"kZ.k izcy jgkA tcfd mRrj iwoZ ekulwu ds ekeys esa xtZ okys rwQku o"kZ.k laoguh es?k ds Hkkx Lrjh es?kksa dh rwyuk esa vf/kd gSaA pØokr ls mRiUu o"kZ.k] mRrj iwoZ  ekulwu o"kZ.k dh rqyuk esa Lrjh {ks= ¼laoguh {ks=½ esa NksVh cw¡nksa ¼NksVh vkSj e/;e vkdkj dh cw¡nksa½ ls laca/k gSA Lrjh vkSj laoguh es?k {ks=ksa esa mRrj iwoZ ekulwu o"kZ.k dh rwyuk esa vkSlr nzO;eku Hkkfjr O;kl] pØokr ls mRiUu o"kZ.k dk Dm de gSA o"kkZ dh cw¡nksa ds vkdkj dk izs{k.k pØokrh; vkSj mRrj iwoZ ekulwu xtZ ds lkFk rwQkuksa ds o"kZ.k es?kksa esa vyx rjg dh fHkUurk ns[kh xbZ gSA Raindrop size distributions (RSD) of  “JAL”  Cyclone induced precipitating clouds (7 Nov. 2010)  and North- East (NE) monsoon thunderstorm precipitating clouds (16 November 2010) were measured with a Particle Size and Velocity (PARSIVEL) disdrometer deployed at Kadapa (14.47°N; 78.82°E), a semiarid continental site in Andhra Pradesh state, India. From the observational results we find that stratiform precipitation is predominant than convective precipitation in cyclone induced precipitation clouds.  Where as in the case of NE monsoon thunderstorm precipitation convective cloud fraction is more than stratiform clouds. The cyclone induced precipitation is associated with  higher concentration of small drops (small and middrops) in stratiform region (convective region) than NE monsoon precipitation.  The average mass weighted diameter, Dm of cyclone induced precipitation is less than the NE monsoon precipitation both in stratiform and convective cloud regions.  The observed RSD are found distinctly vary from cyclonic and NE monsoon thunderstorm precipitating clouds.    


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 63
Author(s):  
Sidou Zhang ◽  
Shiyin Liu ◽  
Tengfei Zhang

By using products of the cloud model, National Centers for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) reanalysis data, and Doppler weather radar data, the mesoscale characteristics, microphysical structure, and mechanism of two hail cloud systems which occurred successively within 24 h in southeastern Yunnan have been analyzed. The results show that under the influence of two southwest jets in front of the south branch trough (SBT) and the periphery of the western Pacific subtropical high (WPSH), the northeast-southwest banded echoes affect the southeastern Yunnan of China twice. Meanwhile, the local mesoscale radial wind convergence and uneven wind speed lead to the intense development of convective echoes and the occurrence of hail. The simulated convective cloud bands are similar to the observation. The high-level mesoscale convergence line leads to the development of convective cloud bands. The low-level wind direction or wind speed convergence and the high-level wind speed divergence form a deep tilted updraft, with the maximum velocity of 15 m·s−1 at the −40~−10 °C layer, resulting in the intense development of local convective clouds. The hail embryos form through the conversion or collision growth of cloud water and snowflakes and have little to do with rain and ice crystals. Abundant cloud water, especially the accumulation region of high supercooled water (cloud water) near the 0 °C layer, is the key to the formation of hail embryos, in which qc is up to 1.92 g·kg−1 at the −4~−2 °C layer. The hail embryos mainly grow by collision-coalescence (collision-freezing) with cloud water (supercooled cloud drops) and snow crystal riming.


1991 ◽  
Vol 147 ◽  
pp. 353-356
Author(s):  
N. Ohashi ◽  
R. Kawabe ◽  
M. Hayashi ◽  
M. Ishiguro

The CS (J = 2 — 1) line and 98 GHz continuum emission have been observed for 11 protostellar IRAS sources in the Taurus molecular cloud with resolutions of 2.6″−8.8″ (360 AU—1200 AU) using the Nobeyama Millimeter Array (NMA). The CS emission is detected only toward embedded sources, while the continuum emission from dust grains is detected only toward visible T Tauri stars except for one embedded source, L1551-IRS5. This suggests that the dust grains around the embedded sources do not centrally concentrate enough to be detected with our sensitivity (∼4 m Jy r.m.s), while dust grains in disks around the T Tauri stars have enough total mass to be detected with the NMA. The molecular cloud cores around the embedded sources are moderately extended and dense enough to be detected in CS, while gas disks around the T Tauri are not detected because the radius of such gas disks may be smaller than 70 (50 K/Tex) AU. These results imply that the total amount of matter within the NMA beam size must increase when the central objects evolve into T Tauri stars from embedded sources, suggesting that the compact and highly dense disks around T Tauri stars are formed by the dynamical mass accretion during the embedded protostar phase.


Sign in / Sign up

Export Citation Format

Share Document