scholarly journals Numerical study on mining induced mechanical behavior of a mine group controlled by a large geological body

2021 ◽  
Vol 861 (6) ◽  
pp. 062099
Author(s):  
Zhenhua Wu ◽  
Peng-Zhi Pan ◽  
Shuting Miao ◽  
Peiyang Yu ◽  
Zhaofeng Wang
2021 ◽  
Vol 138 (27) ◽  
pp. 50648 ◽  
Author(s):  
Roberto Yáñez‐Macías ◽  
Jorge E. Rivera‐Salinas ◽  
Silvia Solís‐Rosales ◽  
Daniel Orduña‐Altamirano ◽  
David Ruíz‐Mendoza ◽  
...  

2015 ◽  
Vol 27 (04) ◽  
pp. 1550033 ◽  
Author(s):  
Mahdi Halabian ◽  
Alireza Karimi ◽  
Borhan Beigzadeh ◽  
Mahdi Navidbakhsh

Abdominal aortic aneurysm (AAA) is a degenerative disease defined as the abnormal ballooning of the abdominal aorta (AA) wall which is usually caused by atherosclerosis. The aneurysm grows larger and eventually ruptures if it is not diagnosed and treated. Aneurysms occur mostly in the aorta, the main artery of the chest and abdomen. The aorta carries blood flow from the heart to all parts of the body, including the vital organs, the legs, and feet. The objective of the present study is to investigate the combined effects of aneurysm and curvature on flow characteristics in S-shaped bends with sweep angle of 90° at Reynolds number of 900. The fluid mechanics of blood flow in a curved artery with abnormal aortic is studied through a mathematical analysis and employing Cosmos flow simulation. Blood is modeled as an incompressible non-Newtonian fluid and the flow is assumed to be steady and laminar. Hemodynamic characteristics are analyzed. Grid independence is tested on three successively refined meshes. It is observed that the abrupt expansion induced by AAA results in an immensely disturbed regime. The results may have implications not only for understanding the mechanical behavior of the blood flow inside an aneurysm artery but also for investigating the mechanical behavior of the blood flow in different arterial diseases, such as atherosclerosis.


2015 ◽  
Vol 51 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Klaus Fellner ◽  
Thomas Antretter ◽  
Peter F Fuchs ◽  
Tiphaine Pélisset

Author(s):  
Nitin Garg ◽  
Gurudutt Chandrashekar ◽  
Farid Alisafaei ◽  
Chung-Souk Han

Abstract Microbeam bending and nano-indentation experiments illustrate that length scale-dependent elastic deformation can be significant in polymers at micron and submicron length scales. Such length scale effects in polymers should also affect the mechanical behavior of reinforced polymer composites, as particle sizes or diameters of fibers are typically in the micron range. Corresponding experiments on particle-reinforced polymer composites have shown increased stiffening with decreasing particle size at the same volume fraction. To examine a possible linkage between the size effects in neat polymers and polymer composites, a numerical study is pursued here. Based on a couple stress elasticity theory, a finite element approach for plane strain problems is applied to predict the mechanical behavior of fiber-reinforced epoxy composite materials at micrometer length scale. Numerical results show significant changes in the stress fields and illustrate that with a constant fiber volume fraction, the effective elastic modulus increases with decreasing fiber diameter. These results exhibit similar tendencies as in mechanical experiments of particle-reinforced polymer composites.


2016 ◽  
Vol 7 ◽  
pp. 207-216 ◽  
Author(s):  
Hela Ben Ayed ◽  
Oualid Limam ◽  
Mohamed Aidi ◽  
Ahmed Jelidi

Author(s):  
Maciej Cwyl Warszawska ◽  
Andrzej Garbacz ◽  
Rafał Michalczyk ◽  
Natalia Grzegorzewska

In this paper, an extensive Finite-Element (FE) numerical study is carried out on a glass framing with point mechanical connectors. The models have been calibrated based on literature studies and field research. The simulations have been performed in order to assess the mechanical behavior of the examined glass-aluminum panels. In frame-support glass structures, such as curtain walls, where glass plates are mounted onto a metal framework, the composite behavior between glass and the supporting aluminum elements is usually a problem. It has been showed that an application of elastomer gaskets decreases the stress concentration at the interface between aluminum and glass while does not significantly change the working scheme of the profile. Based on the proposed models, the failure mechanism for wider set of geometrical configurations can be analyzed.


Sign in / Sign up

Export Citation Format

Share Document