scholarly journals Effect of thermophysical property of energy pile on heat transfer based on the dimensionless analytical solution

2021 ◽  
Vol 861 (7) ◽  
pp. 072135
Author(s):  
Zhenguo Yan ◽  
Shu Zeng ◽  
J Yang
2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Yang Zhou ◽  
Cheng Xu ◽  
David Sego ◽  
Dong-hai Zhang

Abstract The energy pile technology has been widely used, and the solid cylindrical heat source (SCS) model is usually adopted to describe the heat transfer process between the energy pile and the surrounding soil. This paper investigates the SCS model with a convective boundary condition (SCS-3 model), and realistic conditions such as transversely isotropic ground and groundwater flow are all included in the model. An analytical solution for the problem is established using Green's function method and the theory of moving heat sources. Solutions for the SCS model with a boundary condition of the first kind (SCS-1 model) and for the line source (LS) model with a convective boundary condition (LS-3 model) are recovered as special cases of the solution in this paper. Computational examples are presented, and comparisons between different models are made. First, the SCS-1 model is compared with the SCS-3 model, showing the error caused by neglecting the surface convective effect. Second, the LS-3 model is compared with the SCS-3 model, showing the error associated with neglecting the size of heat source. The effects of groundwater flow velocity and convective heat transfer coefficient on the temporal and spatial variations of these errors are also investigated.


2021 ◽  
Author(s):  
Richard Blythman ◽  
Sajad Alimohammadi ◽  
Nicholas Jeffers ◽  
Darina B. Murray ◽  
Tim Persoons

Abstract While numerous applied studies have successfully demonstrated the feasibility of unsteady cooling solutions, a consensus has yet to be reached on the local instantaneous conditions that result in heat transfer enhancement. The current work aims to experimentally validate a recent analytical solution (on a local time-dependent basis) for the common flow condition of a fully-developed incompressible pulsating flow in a uniformly-heated vessel. The experimental setup is found to approximate the ideal constant heat flux boundary condition well, especially for the decoupled unsteady scenario where the amplitude of the most significant secondary contributions (capacitance and lateral conduction) amounts to 1.2% and 0.2% of the generated heat flux, respectively. Overall, the experimental measurements for temperature and heat flux oscillations are found to coincide well with a recent analytical solution to the energy equation by the authors. Furthermore, local time-dependent heat flux enhancements and degradations are observed to be qualitatively similar to those of wall shear stress from a previous study, suggesting that the thermal performance is indeed influenced by hydrodynamic behaviour.


1990 ◽  
Vol 112 (2) ◽  
pp. 441-450 ◽  
Author(s):  
A. Sakurai ◽  
M. Shiotsu ◽  
K. Hata

Experimental data of pool film boiling heat transfer from horizontal cylinders in various liquids such as water, ethanol, isopropanol, Freon-113, Freon-11, liquid nitrogen, and liquid argon for wide ranges of system pressure, liquid subcooling, surface superheat and cylinder diameter are reported. These experimental data are compared with a rigorous numerical solution and an approximate analytical solution derived from a theoretical model based on laminar boundary layer theory for pool film boiling heat transfer from horizontal cylinders including the effects of liquid subcooling and radiation from the cylinder. A new correlation was developed by slightly modifying the approximate analytical solution to agree better with the experimental data. The values calculated from the correlation agree with the authors’ data within ± 10 percent, and also with other researchers’ data for various liquids including those with large radiation effects, though these other data were obtained mainly under saturated conditions at atmospheric pressure.


IFCEE 2021 ◽  
2021 ◽  
Author(s):  
Yong Zou ◽  
Jie Huang ◽  
Fei Wang ◽  
John S. McCartney ◽  
Elahe Jafari

Sign in / Sign up

Export Citation Format

Share Document