scholarly journals An Attempt to Pick Teleseismic P Wave Arrival Using Envelope and Artificial Neural Network Algorithm

2021 ◽  
Vol 873 (1) ◽  
pp. 012059
Author(s):  
R K Lobo ◽  
Y H L Gaol ◽  
D Y Fatimah ◽  
A Abdullah ◽  
D A Zaky ◽  
...  

Abstract Seismic events detection and phase picking play an essential role in earthquake studies. Typical event detection is done visually or manually on recorded seismogram by choosing a series of higher amplitude signals recorded on at least 4 stations. More sophisticated methods have been used in event detection and picking with additional attributes such as Short Time Average over Long Time Average (STA/LTA). This method is based on average number sampled at multiple predefined windows. However, STA/LTA is dependent on the window size which becomes its drawback. In this study, we explore one derivative attribute, popularly known as envelope or instantaneous amplitude. It has been extensively used in seismic reflection and refraction method. In principle, this method uses the Hilbert Transform to calculate complex seismic trace and take the magnitude of complex seismic trace as envelope amplitude that can be used to analyze P wave arrival time. We employed one of the machine learning methods, Artificial Neural Network (ANN). The ANN method works by analyzing various inputs and training them to recognize patterns in P wave arrival signals. We started our study by applying envelope attribute to synthetic data with noise addition. We found that with noisy data the envelope attribute still gives a clear signal for first-time arrival. Next, we trained 300 seismograms of teleseismic events recorded on IRIS-US networks and tested our trained program on 20 seismograms as a blind test. To compare performance between the two methods, we calculated the difference between the results of automatic picking and manual picking. The final calculation shows an average deviation of 0.355 seconds. Twenty-five percent of testing data (5 samples) has a deviation above 0.5 seconds, and 75% of the remainder (15 samples) already had a deviation under 0.5 seconds. The more significant deviations of the P wave picks are likely due to noisy signals in the data set and complex arrival signals. This study shows that the combination of envelope attribute and machine learning method is promising to distinguish teleseismic P wave arrival and automatically pick them.

2021 ◽  
Vol 873 (1) ◽  
pp. 012061
Author(s):  
Y H Lumban Gaol ◽  
R K Lobo ◽  
S S Angkasa ◽  
A Abdullah ◽  
I Madrinovella ◽  
...  

Abstract The traditional method in determining first arrival time of earthquake dataset is time consuming process due to waveform manual inspection. Additional waveform attributes can help determine events detection. One of the widely used attribute is The Short Term Averaging/Long Term Averaging (STA/LTA) which is simply division moving average of waveform amplitude between short time and longer time. Alternatively, waveform attribute can also be built using kurtosis and skewness. The kurtosis attribute is defined as sharpness of data distribution. By definition, the maximum signal should be at or close to the P wave arrival. The skewness is typically used to show normal distribution of the data. The uniqueness of this method is that it has an ability to determine whether the first P wave arrival has positive of negative number. The skewness calculation is similar to kurtosis but it uses the power of 3 instead of 4. With the objective of generating efficient scheme to pick first time arrival, we explore use artificial neural network and a combination of kurtosis and skewness attributes. We use a collection of magnitude events with moment magnitude larger than 3 located close to Moluccas island, Indonesia. We collected all events information from the Indonesian Agency of Meteorology, Climatology and Geophysics. The process is started with manually pick all P wave arrivals using manual inspection. Next, we trained the artificial neural network with attributes numbers as inputs and arrival time we manually picked as the output. In total we used 100 regional events that has clear P wave phases. Then, we validated the results until reaching 0.99 accuracy. In the last step, we tested the once trained procedures on new waveforms contained events. Current result shows an average of 0.4s different between manual pick and trained picked from machine learning. The accuracy can be improved by applying a band pass 0.1-2 Hz filtering with an average of 0.2s.


Author(s):  
Paolo Massimo Buscema ◽  
William J Tastle

Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.


Author(s):  
Paolo Massimo Buscema ◽  
William J. Tastle

Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.


2020 ◽  
Vol 39 (6) ◽  
pp. 8463-8475
Author(s):  
Palanivel Srinivasan ◽  
Manivannan Doraipandian

Rare event detections are performed using spatial domain and frequency domain-based procedures. Omnipresent surveillance camera footages are increasing exponentially due course the time. Monitoring all the events manually is an insignificant and more time-consuming process. Therefore, an automated rare event detection contrivance is required to make this process manageable. In this work, a Context-Free Grammar (CFG) is developed for detecting rare events from a video stream and Artificial Neural Network (ANN) is used to train CFG. A set of dedicated algorithms are used to perform frame split process, edge detection, background subtraction and convert the processed data into CFG. The developed CFG is converted into nodes and edges to form a graph. The graph is given to the input layer of an ANN to classify normal and rare event classes. Graph derived from CFG using input video stream is used to train ANN Further the performance of developed Artificial Neural Network Based Context-Free Grammar – Rare Event Detection (ACFG-RED) is compared with other existing techniques and performance metrics such as accuracy, precision, sensitivity, recall, average processing time and average processing power are used for performance estimation and analyzed. Better performance metrics values have been observed for the ANN-CFG model compared with other techniques. The developed model will provide a better solution in detecting rare events using video streams.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


Author(s):  
Runhai Jiao ◽  
Qihang Zhou ◽  
Liangqiu Lyu ◽  
Guangwei Yan

Background: The traditional state-based non-intrusive load monitoring method mainly deploys the aggregate load as the characteristic to identify the states of every electrical appliance. Each identification is relatively independent, and there is no correlation between the identification results. Objective: This paper combines the event detection results with the state-based non-intrusive load identification algorithm to improve accuracy. Methods: Firstly, the load recognition model based on an artificial neural network is constructed, and the state-based recognition results are obtained. An event recognition and detection model is then built to identify electrical state transitions, that is, the current moment based on the event recognition results obtained from the previous moment. Finally, a reasonable decision method is constructed to determine the identification result of the electrical states. Result: Experimental results on the public data set REDD show that in the Long Short-Term Memory (LSTM) fusion model, the macro-F1 is increased by an average of 6%, and the macro-F1 of the Artificial Neural Network (ANN) fusion model is increased by an average of 5.3% compared with LSTM and ANN. Conclusion: The proposed model can effectively improve the accuracy of identification compared with the state-based load identification method.


Sign in / Sign up

Export Citation Format

Share Document