scholarly journals A Hydrological Digital Twin by Artificial Neural Networks for Flood Simulation in Gardon de Sainte-Croix Basin, France

2021 ◽  
Vol 906 (1) ◽  
pp. 012112
Author(s):  
Cagri Inan Alperen ◽  
Guillaume Artigue ◽  
Bedri Kurtulus ◽  
Séverin Pistre ◽  
Anne Johannet

Abstract Understanding, simulating and forecasting dynamic and nonlinear natural phenomena are necessary in a climate change context and increased sensitivity of societies to natural hazards. Nevertheless, even though powerful computing tools and algorithms have been widely used to understand and to predict natural disasters, these tasks are still challenging for scientists. Indeed, one of the most dangerous natural phenomena, flash floods keep being a challenge for modelers, despite (i) the existence of some effective hydrological simulating tools, and (ii) the increasing availability of descriptive data, especially rainfall and discharge. In particular, on one hand, environmental data contain an important amount of noise leading to additional uncertainties and on the other hand, physically based models strongly depend on assumptions about the behavior of the basin, that is often more variable in space and time than what is modelled. With the objective of applying data assimilation to improve forecasting properties of the physical model, it is necessary to dispose of a differentiable model. In order to mitigate this issue, a hybrid physical and statistical approach is proposed in this study. It was shown in previous works that deep neural networks are able to identify any differentiable function by using the universal approximation property. Deep neural networks are also good candidates to perform the digital twin of the physical model. Thus, three different neural networks models were designed in this study, and each one is implementing a different type of non-linear filter model, in order to achieve the dynamic character of the catchment area (recurrent, feedforward and static models). The study area is located in the Gardon de Sainte-Croix basin (France), which is known for its sudden and violent floods that caused casualties and a lot of damage. The chosen physical-based model is semi distributed conceptual hydrological SOCONT model, RS Minerve (https://www.crealp.ch/down/rsm/install2/archives.html). Neural networks design was done by using a rigorous complexity selection and regularization methods to promote a good generalization. The three models obtained were thus compared. The feed forward model gave the best results on tests events (Nash score=0.98−0.99), making full use of the inputs with previous observed discharges whereas the recurrent model gave interesting results representing satisfactorily the dynamics of the physical model (Nash score=0.8−0.97). The static model, whose inputs contain only rainfall, is less efficient, showing the importance of dynamics in that kind of system (Nash score=0.62−0.84). Beyond data assimilation, these results open paths of inquiry for building digital twins of physical model, allowing also a great reduction of computing time.

2021 ◽  
Vol 13 (8) ◽  
pp. 1495
Author(s):  
Jehyeok Rew ◽  
Yongjang Cho ◽  
Eenjun Hwang

Species distribution models have been used for various purposes, such as conserving species, discovering potential habitats, and obtaining evolutionary insights by predicting species occurrence. Many statistical and machine-learning-based approaches have been proposed to construct effective species distribution models, but with limited success due to spatial biases in presences and imbalanced presence-absences. We propose a novel species distribution model to address these problems based on bootstrap aggregating (bagging) ensembles of deep neural networks (DNNs). We first generate bootstraps considering presence-absence data on spatial balance to alleviate the bias problem. Then we construct DNNs using environmental data from presence and absence locations, and finally combine these into an ensemble model using three voting methods to improve prediction accuracy. Extensive experiments verified the proposed model’s effectiveness for species in South Korea using crowdsourced observations that have spatial biases. The proposed model achieved more accurate and robust prediction results than the current best practice models.


2020 ◽  
Vol 185 ◽  
pp. 02025
Author(s):  
Guo Yanan ◽  
Cao Xiaoqun ◽  
Peng Kecheng

Atmospheric systems are typically chaotic and their chaotic nature is an important limiting factor for weather forecasting and climate prediction. So far, there have been many studies on the simulation and prediction of chaotic systems using numerical simulation methods. However, there are many intractable problems in predicting chaotic systems using numerical simulation methods, such as initial value sensitivity, error accumulation, and unreasonable parameterization of physical processes, which often lead to forecast failure. With the continuous improvement of observational techniques, data assimilation has gradually become an effective method to improve the numerical simulation prediction. In addition, with the advent of big data and the enhancement of computing resources, machine learning has achieved great success. Studies have shown that deep neural networks are capable of mining and extracting the complex physical relationships behind large amounts of data to build very good forecasting models. Therefore, in this paper, we propose a prediction method for chaotic systems that combines deep neural networks and data assimilation. To test the effectiveness of the method, we use the model to perform forecasting experiments on the Lorenz96 model. The experimental results show that the prediction method that combines neural network and data assimilation is very effective in predicting the amount of state of Lorenz96. However, Lorenz96 is a relatively simple model, and our next step will be to continue the experiments on the complex system model to test the effectiveness of the proposed method in this paper and to further optimize and improve the proposed method.


Author(s):  
Bin He ◽  
Long Liu ◽  
Dong Zhang

Abstract As a transmission component, the gear has been obtained widespread attention. The remaining useful life (RUL) prediction of gear is critical to the prognostics health management (PHM) of gear transmission systems. The digital twin (DT) provides support for gear RUL prediction with the advantages of rich health information data and accurate health indicators (HI). This paper reviews digital twin-driven RUL prediction methods for gear performance degradation, from the view of digital twin-driven physical model-based and virtual model-based prediction method. From the view of physical model-based one, it includes prediction model based on gear crack, gear fatigue, gear surface scratch, gear tooth breakage, and gear permanent deformation. From the view of digital twin-driven virtual model-based one, it includes non-deep learning methods, and deep learning methods. Non-deep learning methods include wiener process, gamma process, hidden Markov model (HMM), regression-based model, proportional hazard model. Deep learning methods include deep neural networks (DNN), deep belief networks (DBN), convolutional neural networks (CNN), and recurrent neural networks (RNN), etc. It mainly summarizes the performance degradation and life test of various models in gear, and evaluates the advantages and disadvantages of various methods. In addition, it encourages future works.


2021 ◽  
Vol 3 (2) ◽  
pp. 148-159
Author(s):  
Shahab Kareem ◽  
Zhala Jameel Hamad ◽  
Shavan Askar

Artificial intelligence through deep neural networks is now widely used in a variety of applications that have profoundly altered human livelihoods in a variety of ways.  People's daily lives have become much more convenient. Image recognition, smart recommendations, self-driving vehicles, voice translation, and a slew of other neural network innovations have had a lot of success in their respective fields. The authors present the ANN applied in weather forecasting. The prediction technique relies solely upon learning previous input values from intervals in order to forecast future values. And also, Convolutional Neural Networks (CNNs) are a form of deep learning technique that can help classify, recognize, and predict trends in climate change and environmental data. However, due to the inherent difficulties of such results, which are often independently identified, non-stationary, and unstable CNN algorithms should be built and tested with each dataset and system separately. On the other hand, to eradicate error and provides us with data that is virtually identical to the real value we need Artificial Neural Networks (ANN) algorithms or benefit from it. The presented CNN model's forecasting efficiency was compared to some state-of-the-art ANN algorithms. The analysis shows that weather prediction applications become more efficient when using ANN algorithms because it is really easy to put into practice.


Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

Sign in / Sign up

Export Citation Format

Share Document