scholarly journals Tolerance design of electromechanical products based on self-defined approximate model

2021 ◽  
Vol 1043 (2) ◽  
pp. 022064
Author(s):  
J Deng ◽  
J M Lai ◽  
G F Zhai
2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Guodong Sa ◽  
Zhenyu Liu ◽  
Chan Qiu ◽  
Xiang Peng ◽  
Jianrong Tan

Abstract Tolerance design is becoming increasingly important for electromechanical products. Reasonable tolerance design can reduce production costs and improve product performance. However, as the complexity of the coupling of tolerances and performance increases, it becomes difficult for designers to establish accurate tolerance design models, leading to experience-based design. This study proposes a novel performance-oriented tolerance design method. First, the main tolerance variables affecting the product performance are rapidly determined based on the proposed locally inferred sensitivity analysis method. Then, based on the improved approximate polynomial chaos expansion, a surrogate model of the product performance and main tolerance variables is established. Finally, the geometric tolerances of the electromechanical products are optimized based on the surrogate model with performance requirements. The proposed tolerance design method is computationally efficient and accurate, and it can be implemented with a small number of samples. To demonstrate its performance, the proposed method is validated with a spaceborne active-phased array antenna. The optimal tolerance design of the antenna for the electrical performance requirements is performed successfully.


Author(s):  
Victor V. Yagov ◽  
Arslan R. Zabirov ◽  
Pavel K. Kanin ◽  
Maxim A. Lexin

1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


2003 ◽  
Vol 3 ◽  
pp. 195-207
Author(s):  
A.M. Ilyasov ◽  
V.N. Kireev ◽  
S.F. Urmancheev ◽  
I.Sh. Akhatov

The work is devoted to the analysis of the flow of immiscible liquid in a flat channel and the creation of calculation schemes for determining the flow parameters. A critical analysis of the well-known Two Fluids Model was carried out and a new scheme for the determination of wall and interfacial friction, called the hydraulic approximation in the theory of stratified flows, was proposed. Verification of the proposed approximate model was carried out on the basis of a direct numerical solution of the Navier–Stokes equations for each fluid by a finite-difference method with phase-boundary tracking by the VOF (Volume of Fluid) method. The graphical dependencies illustrating the change in the interfase boundaries of liquids and the averaged over the occupied area of the phase velocities along the flat channel are presented. The results of comparative calculations for two-fluid models are also given, according to the developed model in the hydraulic approximation and direct modeling. It is shown that the calculations in accordance with the hydraulic approximation are more consistent with the simulation results. Thus, the model of hydraulic approximation is the most preferred method for calculating stratified flows, especially in cases of variable volumetric content of liquids.


1982 ◽  
Vol 47 (11) ◽  
pp. 3013-3018
Author(s):  
František Kaštánek ◽  
Jindřich Zahradník ◽  
Germanico Ocampo

Calculation procedure is suggested for flow intensity of substrate toward reaction interface of immobilized enzyme at simultaneous effect of enzymatic reaction and internal diffusion. The approximate model is presented in an analytical form for the basic type of Michaelis-Menten kinetics and for the case of inhibition in excess of substrate.


2021 ◽  
pp. 204141962110272
Author(s):  
Chaomei Meng ◽  
Dianyi Song ◽  
Qinghua Tan ◽  
Zhigang Jiang ◽  
Liangcai Cai ◽  
...  

Cellular steel-tube-confined concrete (CSTCC) targets show improved anti-penetration performance over single-cell STCC targets due to the confinement effect of surrounding cells on the impacted cell. Dynamic finite cylindrical cavity-expansion (FCCE) models including radial confinement effect were developed to predict the depth of penetration (DOP) for CSTCC targets normally penetrated by rigid sharp-nosed projectiles, and stiffness of radial confinement was achieved with the elastic solution of infinite cylindrical shell in Winkler medium. Steady responses of dynamic FCCE models were obtained on the assumption of incompressibility of concrete, failure of comminuted zone with Heok–Brown criterion and two possible response modes of the confined concrete in the impacted cell. Furthermore, a DOP model for CSTCC targets normally impacted by rigid projectiles was also proposed on the basis of the dynamic FCCE approximate model. Lastly, relevant penetration tests of CSTCC targets normally penetrated by 12.7 mm armor piecing projectile (APP) were taken as examples to validate the dynamic FCCE models and the corresponding DOP model. The results show that the DOP results based on dynamic FCCE model agree well with those of the CSTCC targets normally penetrated by rigid conical or other sharp-nosed projectiles.


2020 ◽  
Vol 8 (11) ◽  
pp. 870
Author(s):  
Liang Li ◽  
Qingfei Gao ◽  
Alexander Bekker ◽  
Hongzhe Dai

The estimation of ship resistance in ice is a fundamental area of research and poses a substantial challenge for the design and safe use of ships in ice-covered waters. In order to estimate the ice resistance with greater reliability, we develop in this paper an improved Lindqvist formulation for the estimation of bending resistance in level ice based on the superposition of double-plates. In the developed method, an approximate model of an ice sheet is firstly presented by idealizing ice sheeta as the combination of a semi-infinite elastic plate and an infinite one resting on an elastic foundation. The Mohr–Coulomb criterion is then introduced to determine the ice sheet’s failure. Finally, an improved Lindqvist formulation for estimation of ice resistance is proposed. The accuracy of the developed formulation is validated using full-scale test data of the ship KV Svalbard in Norway, testing the model as well as the numerical method. The effect of ice thickness, stem angle and breadth of bow on ship resistance is further investigated by means of the developed formulation.


Sign in / Sign up

Export Citation Format

Share Document