scholarly journals CFD Analysis for Different Types of Fins to Enhancement the Heat Transfer Rate Through A Cross Flow Heat Exchanger

2021 ◽  
Vol 1058 (1) ◽  
pp. 012027
Author(s):  
Shatha Ali Merdan ◽  
Zena Khalefa Kadhim ◽  
Ali Arkan Alwan
Author(s):  
Ahmad Fakheri

The heat exchanger efficiency is defined as the ratio of the actual heat transfer in a heat exchanger to the optimum heat transfer rate. The optimum heat transfer rate, qopt, is given by the product of UA and the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids. The actual rate of heat transfer in a heat exchanger is always less than this optimum value, which takes place in an ideal balanced counter flow heat exchanger. It has been shown that for parallel flow, counter flow, and shell and tube heat exchanger the efficiency is only a function of a single nondimensional parameter called Fin Analogy Number. The function defining the efficiency of these heat exchangers is identical to that of a constant area fin with an insulated tip. This paper presents exact expressions for the efficiencies of the different cross flow heat exchangers. It is shown that by generalizing the definition of Fa, very accurate results can be obtained by using the same algebraic expression, or a single algebraic expression can be used to assess the performance of a variety of commonly used heat exchangers.


2013 ◽  
Vol 388 ◽  
pp. 149-155 ◽  
Author(s):  
Mazlan Abdul Wahid ◽  
Ahmad Ali Gholami ◽  
H.A. Mohammed

In the present work, laminar cross flow forced convective heat transfer of nanofluid over tube banks with various geometry under constant wall temperature condition is investigated numerically. We used nanofluid instead of pure fluid ,as external cross flow, because of its potential to increase heat transfer of system. The effect of the nanofluid on the compact heat exchanger performance was studied and compared to that of a conventional fluid.The two-dimensional steady state Navier-Stokes equations and the energy equation governing laminar incompressible flow are solved using a Finite volume method for the case of flow across an in-line bundle of tube banks as commercial compact heat exchanger. The nanofluid used was alumina-water 4% and the performance was compared with water. In this paper, the effect of parameters such as various tube shapes ( flat, circle, elliptic), and heat transfer comparison between nanofluid and pure fluid is studied. Temperature profile, heat transfer coefficient and pressure profile were obtained from the simulations and the performance was discussed in terms of heat transfer rate and performance index. Results indicated enhanced performance in the use of a nanofluid, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The results show that, for a given heat duty, a mas flow rate required of the nanofluid is lower than that of water causing lower pressure drop. Consequently, smaller equipment and less pumping power are required.


Author(s):  
Rakesh Kumar Tiwari ◽  
Ajay Singh ◽  
Parag Mishra

In this manuscript we have presented eight variation of Air-Cooled Heat Exchanger (ACHE) design with internal spiral grooving, all of them are having variable number of rectangular copper fins with different distances between the fins. In the proposed design we get the value of heat transfer rate of a counter to cross flow ACHE is 7833.77 watt, 4068.13 watt, 2736.95 watt, 2161.49 watt, 1802.89 watt, 1546.44 watt, 1336.51 watt and 1165.74 watt in natural convection (without fan) for 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm and 4.0 cm respectively. Then again, value of rate of heat transfer in forced convection (with fan) are 8007.46 watt, 4084.81 watt, 2754.69 watt, 2205.98 watt, 1809.24 watt, 1555.39 watt, 1352.88 watt and 1172.78 watt for 0.5 cm, 1.0 cm, 1.5cm, 2.0 cm, 2.5 cm, 3.0 cm, 3.5 cm and 4.0 cm respectively.


2017 ◽  
Vol 67 (4) ◽  
pp. 396
Author(s):  
Annur Srinivasan Krishnan ◽  
Palanivelu Gowtham

The preliminary findings of a comparative study of heat transfer rate and pressure drop between conventional staggered flow and double cross flow heat exchanger is reported. Excepting for the tube arrangements, the shell and tube dimensions, materials and inlet conditions are retained the same for the two configurations. While in the conventional arrangement, adjacent rows of tubes are normal only to the fluid flow in the shell, in the double cross-flow arrangement, they are normal to both fluid flow direction in the shell as well as to each other. Shell dimensions are 100 cm × 20 cm × 20 cm and tube outside and inside diameters are 1 cm and 0.8 cm. The shell and tube materials are steel and copper. Water and air were considered as tube and shell side fluids respectively, with an overall arrangement of parallel flow. The tube flow Reynolds number was fixed at 2200 and the shell flow Reynolds number was varied from 20 to 120 in the laminar regime and 360 to 600 in the turbulent zone. The study reveals that the proposed configuration gives a maximum increase of about 27 per cent in the heat transfer rate per unit pressure drop over the conventional one.


Author(s):  
Ahmad Fakheri

The heat exchanger efficiency is defined as the ratio of the actual heat transfer in a heat exchanger to the optimum heat transfer rate. The optimum heat transfer rate, qopt, is given by the product of UA and the Arithmetic Mean Temperature Difference, which is the difference between the average temperatures of hot and cold fluids. The actual rate of heat transfer in a heat exchanger is always less than this optimum value, which takes place in a balanced counter flow heat exchanger. It is shown that for parallel flow, counter flow, and shell and tube heat exchanger the efficiency is only a function of a single nondimensional parameter called Fin Analogy Number. Remarkably, the functional dependence of the efficiency of these heat exchangers on this parameter is identical to that of a constant area fin with an insulated tip. Also a general algebraic expression as well as a generalized chart is presented for the determination of the efficiency of shell and tube heat exchangers with any number of shells and even number of tube passes per shell, when the Number of Transfer Units (NTU) and the capacity ratio are known. Although this general expression is a function of the number of shells and another nondimensional group, it turns out to be almost independent of the number of shells over a wide range of practical interest. The same general expression is also applicable to parallel and counter flow heat exchangers.


Author(s):  
Rishi Kumar ◽  
Parag Mishra ◽  
Ajay Singh

In this manuscript we have presented seven variation of Air-Cooled Heat Exchanger (ACHE) design with internal grooving annular tube, all of them are having variable number of aluminum rectangular fins with different distances between the fins. In the proposed design we get the value of heat transfer rate of a counter to cross flow ACHE is 7062.95 watt, 3969.78 watt, 2724.15 watt, 2149.25 watt, 1785.03 watt, 1533.43 watt, and 1325.34 watt in natural convection (without fan) for 5 mm, 10 mm, 15mm, 20 mm, 25 mm, 30 mm and 35 mm respectively. On the other hand the value of heat transfer rate in forced convection (with fan) are 7100.40 watt, 3995.30 watt, 2740.54 watt, 2162.26 watt, 17897.63 watt, 1540.00 watt, and 1331.60 watt for 5 mm, 10 mm, 15mm, 20 mm, 25 mm, 30 mm and 35 mm respectively.


2013 ◽  
Vol 448-453 ◽  
pp. 3259-3269
Author(s):  
Zhi Wei Li ◽  
Hong Zhou He ◽  
Huang Huang Zhuang

The characteristics of the external heat exchanger (EHE) for a 4 MWth circulation fluidized bed combustor were studied in the present paper. The length, width and height of EHE were 1.5 m, 0.8 m and 9 m, respectively. The circulating ash flow passing the heating surface bed could be controlled by adjusting the fluidizing air flow and the heating transferred from the circulating ash to the cooling water. The ash flow rate passing through the heat transfer bed was from 0.4 to 2.2 kg/s. The ash average temperature was from 500 to 750 °C. And the heat transfer rate between the ash and the cooling water was between 150 and 300 W/(m2·°C). The relationships among the circulating ash temperature, the heat transfer, heat transfer rate, the heat transfer coefficient and the circulating ash flow passing through the heating exchange cell were also presented and could be used for further commercial EHE design.


Sign in / Sign up

Export Citation Format

Share Document