scholarly journals Numerical simulation of a single pile under the combined effects of axial and lateral loading in liquefiable soil

2021 ◽  
Vol 1067 (1) ◽  
pp. 012026
Author(s):  
Rusal S. Huissen ◽  
Bushra S. Albusoda
2011 ◽  
Vol 71-78 ◽  
pp. 4460-4462
Author(s):  
Ya Dong Chen ◽  
Xu Dong Wang ◽  
Yue Xin She ◽  
Jiang Dong Cai

ABAQUS is used to study the load-settlement characteristic and soil displacement field of the pile raft foundation. Numerical results are compared to the outputs from model test. The study results show that good consistency is obtained from the comparison of results between numerical simulation and model tests. Small pile space will weaken the single pile bearing capacity. The compress region is mainly centralized in the soil beneath the pile tip to the 3b space pile raft foundation, which presents a massive deep foundation failure pattern. As the increase of pile space, the compress region under cap shifts upward. The displacement influence depth of 6b space pile foundation is smaller than 3b space pile raft foundation, and it is destroyed by the lateral squeeze of the soil around piles.


2011 ◽  
Vol 374-377 ◽  
pp. 1947-1952 ◽  
Author(s):  
Zhao Yun Xiao ◽  
Guo Xun Zhang ◽  
Wei Xu ◽  
Zhong Ming Xue

It is a complicated progress of interaction between pile and soil when pile is under both vertical load and horizontal load. This paper analyzes the variation of stress, strain, deformation and deflection of the pile body by finite element numerical simulation of single bored concrete pile under vertical load together with horizontal load. Based on the existing research results, conclusions could be that the vertical load can increase horizontal bearing capacity of the pile in sandy soils, but horizontal bearing capacity of the pile in clayey soils is more complicated. Hope that the simulation can provide some references for the design of pile foundation.


2020 ◽  
Vol 10 (17) ◽  
pp. 6140
Author(s):  
Jianwei Zhang ◽  
Xiaoju Wang ◽  
Hao Wang ◽  
Hongyu Qin

Vertical loads are commonly transferred by piles primarily in the upper structures. However, lateral loads are also significant compared with vertical loads in pile foundation design. Compared with a pile on level ground, there are many particular characteristics in a pile that is on sloping ground. These characteristics depend on the combined loading and the magnitude of the soil lateral displacement. In order to investigate the pile’s bearing characteristics, a model test was conducted and ABAQUS software was adopted to conduct 3D numerical simulation of a single pile with different slope angles under combined loads. The experimental results indicated that (1) the soil pressure along the slope direction was smaller than the other side, resulting in an asymmetry of the slope soil around the pile, and in turn introducing a horizontal thrust to the pile; (2) with the increase of slope angle, the horizontal thrust increased while the single pile’s bearing capacity decreased; (3) the vertical load caused more pile horizontal displacement with the growth of slope angle; and (4) the pile’s moment and the displacement also increased with the growth of the slope angle. The findings in this study can provide a useful reference in the design of piles or anti-slide piles in sloping ground.


2007 ◽  
Vol 23 (4) ◽  
pp. 389-398 ◽  
Author(s):  
C. W. Lu

AbstractIt is believed that a dynamic analysis is urgently required to provide a more reliable numerical method for seismic evaluation of a full system, which includes foundation, super structure, and ground in earthquake zones such as Taiwan and Japan. A centrifugal model test of pile foundation is simulated numerically using a three-dimensional finite-element model (3D-FEM) code in this study. In the numerical simulation, parameters of the sandy soils in tij model that are derived from accumulated experiences in static tests are first calibrated by centrifugal vibration tests of sandy ground. Model tests of a single pile foundation installed in grounds of same unit weight of soil as in the static tests are then simulated using the calibrated parameters. The numerical simulation resulted in a good agreement with the corresponding physical model tests. By comparing the computed and the observed results, one can find and confirm that it is necessary to employ an appropriate soil model to reproduce dynamic soil behavior due to major vibration. Representation of pile by beam element in the numerical analysis is applicable when attention is paid on the response acceleration of top of pile foundation, on soils at some distances to the pile foundation, and on bending moment of the pile in a stiffer ground. Equal-displacement boundary condition for two-side boundaries is proven to be efficient. To reduce the computation time, the assumption of a constant damping of viscous matrix is acceptable.


Sign in / Sign up

Export Citation Format

Share Document