centrifugal model
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 151 ◽  
pp. 106985
Author(s):  
Zhijun Zhou ◽  
Kangchao Wang ◽  
Hongming Feng ◽  
Yeqing Tian ◽  
Shanshan Zhu

2021 ◽  
Vol 9 ◽  
Author(s):  
Junhui Zhang ◽  
Feng Li ◽  
Shiping Zhang ◽  
Jiankun Zhou ◽  
Houming Wu

An anchoring frame beam is a very common form of support for reinforced slopes, especially in alpine regions. Centrifugal tests have proved to be an intuitive and effective means of investigating the mechanism of action of frame beams. However, the data acquisition system of the geotechnical centrifuge in service has the problem of a small number of acquisition channels. A multi-channel selector based on the existing acquisition system was proposed, designed, processed, and manufactured, and it was debugged, tested, and applied in a no-load centrifugal test, static pressure model test, and centrifugal model test. The results show that the acquisition mode of the multi-channel selector connected with a maximum of 288 sensors has been changed from “one-to-one” to “one-to-many”. Its influence on various sensor signals is negligible. The multi-channel selector can work normally, which communicates and feeds back with the remote controller in the 1–120 g no-load centrifugal test. In the static load model test, 162 sensor signals were well collected through it. And only 51 channels were used to effectively obtain the signals of 187 sensors in a 70 g centrifugal model test of an anchoring slope with a frame beam. The multi-channel selector can be successfully applied in different use environments, saving time and reducing the cost of obtaining a single set of data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui Yun Chen ◽  
Zhong Ju Feng ◽  
Tie Li ◽  
Shao Fen Bai ◽  
Cong Zhang

AbstractA new method was used to study the performance of pile across cave. This paper investigated the vertical bearing characteristics of piles cross caves using centrifugal model tests and a theoretical model of sensitivity. Twelve pile scenarios were selected, the first was a conventional pile, 24 cm long and 2.5 cm in diameter, with no karst cave as a control. In the other eleven scenarios the piles passed through karst caves of four different heights, of four different spans, and three different numbers of caves. The results reveal that increasing the height, span, and number of caves all are negative for vertical ultimate bearing capacity of piles. The axial force and unit shaft resistance of piles are great different. According to the ratios of the tip and shaft resistance, caves change the type of piles. The sensitivity of vertical ultimate bearing capacity to these factors from high to low is height, number, and span of caves. Importantly, the bearing characteristics of piles decrease faster once the height of the prototype karst cave is higher than 9 m, but decreases slowly when the cave’s span is greater than 9 m × 9 m.


2021 ◽  
Author(s):  
Wenyue Che ◽  
Jin Liu ◽  
Jianbing Peng ◽  
Zhongjie Fan ◽  
Yuxia Bai ◽  
...  

Abstract Many landslides are induced by excavation activities in the loess region. In this article, a loess – paleosol slope model was built and tested under 80 g centrifugal environment. Three certain angle excavations were simulated by manipulator movement. The mini pressure sensor and PIV system were utilized to monitor experimental process respectively. It can be found that the slope from excavation to failure, is liable to form the deep and shallow two sliding surfaces. The distance perpendicular to slope surface was measured as 9.6 cm for the deeper sliding surface, and 4.2 cm for the shallower one. Both of sliding surfaces are caused by the interaction of tensile failure and shear failure, specifically presented as the tensile failure concentrating on the upper part and the shear failure on the lower part. The loess slope can be split into three zones by response of excavation unloading (i.e., the sliding zone, the influenced zone and the uninfluenced zone). The failure pattern belongs to a retrogressive type with the bulging front edge and tension cracking trailing edge. The causes of the fractures on the slope top can be divided into different sections. The fracture near the slope top is induced by tension and shear force. But the fracture away from slope top is only induced by tension. In addition, the plastic zone development distribution of simulation has a good consistency with the centrifugal model deformation zoning diagram. These results can provide guidance for excavation activities in loess – paleosol slopes.


Author(s):  
Daiki TAKANO ◽  
Yoshiyuki MORIKAWA ◽  
Yuri SUGIYAMA ◽  
Yasunari MATSUO ◽  
Yoshiaki HAMANO ◽  
...  

2020 ◽  
pp. 139-147
Author(s):  
V.I. Vutsel ◽  
V.I. Scherbina

Sign in / Sign up

Export Citation Format

Share Document