scholarly journals Solving N-Queen Problem by Genetic Algorithm using Novel Mutation Operator

2021 ◽  
Vol 1116 (1) ◽  
pp. 012195
Author(s):  
Sachin Sharma ◽  
Vinod Jain
2009 ◽  
Vol 05 (02) ◽  
pp. 487-496 ◽  
Author(s):  
WEI FANG ◽  
JUN SUN ◽  
WENBO XU

Mutation operator is one of the mechanisms of evolutionary algorithms (EAs) and it can provide diversity in the search and help to explore the undiscovered search place. Quantum-behaved particle swarm optimization (QPSO), which is inspired by fundamental theory of PSO algorithm and quantum mechanics, is a novel stochastic searching technique and it may encounter local minima problem when solving multi-modal problems just as that in PSO. A novel mutation mechanism is proposed in this paper to enhance the global search ability of QPSO and a set of different mutation operators is introduced and implemented on the QPSO. Experiments are conducted on several well-known benchmark functions. Experimental results show that QPSO with some of the mutation operators is proven to be statistically significant better than the original QPSO.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Zhi-fei Xi ◽  
An Xu ◽  
Ying-xin Kou ◽  
Zhan-wu Li ◽  
Ai-wu Yang

Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and threat assessment. Aiming at the problem of low prediction accuracy in traditional trajectory prediction methods, combined with the chaotic characteristics of the target maneuver trajectory time series, a target maneuver trajectory prediction model based on chaotic theory and improved genetic algorithm-Volterra neural network (IGA-VNN) model is proposed, mathematically deducing and analyzing the consistency between Volterra functional model and back propagation (BP) neural network in structure. Firstly, the C-C method is used to reconstruct the phase space of the target trajectory time series, and the maximum Lyapunov exponent of the time series of the target maneuver trajectory is calculated. It is proved that the time series of the target maneuver trajectory has chaotic characteristics, so the chaotic method can be used to predict the target trajectory time series. Then, the practicable Volterra functional model and BP neural network are combined together, learning the advantages of both and overcoming the difficulty in obtaining the high-order kernel function of the Volterra functional model. At the same time, an adaptive crossover mutation operator and a combination mutation operator based on the difference degree of gene segments are proposed to improve the traditional genetic algorithm; the improved genetic algorithm is used to optimize BP neural network, and the optimal initial weights and thresholds are obtained. Finally, the IGA-VNN model of chaotic time series is applied to the prediction of target maneuver trajectory time series, and the experimental results show that its estimated performance is obviously superior to other prediction algorithms.


2009 ◽  
Vol 197 (2) ◽  
pp. 830-833 ◽  
Author(s):  
Li-Ning Xing ◽  
Ying-Wu Chen ◽  
Ke-Wei Yang

2019 ◽  
Vol 12 (4) ◽  
pp. 153-170 ◽  
Author(s):  
Guefrouchi Ryma ◽  
Kholladi Mohamed-Khireddine

Meta-heuristics are used as a tool for ontology mapping process in order to improve their performance in mapping quality and computational time. In this article, ontology mapping is resolved as an optimization problem. It aims at optimizing correspondences discovery between similar concepts of source and target ontologies. For better guiding and accelerating the concepts correspondences discovery, the article proposes a meta-heuristic hybridization which incorporates the Hill Climbing method within the mutation operator in the genetic algorithm. For test concerns, syntactic and lexical similarities are used to validate correspondences in candidate mappings. The obtained results show the effectiveness of the proposition for improving mapping performances in quality and computational time even for large OAEI ontologies.


2013 ◽  
Vol 791-793 ◽  
pp. 1409-1414 ◽  
Author(s):  
Meng Wang ◽  
Kai Liu ◽  
Zhu Long Jiang

The battery quick exchange mode is an effective solution to resolve the battery charging problem of electric vehicle. For the electric vehicle battery distribution network with the battery quick exchange mode, the distribution model and algorithm are researched; the general mathematical model to take delivery of the vehicle routing problem with time window (VRP-SDPTW) is established. By analyzing the relationship between the main variables, structure priority function of the initial population, a new front crossover operator, swap mutation operator and reverse mutation operator are designed, and an improved genetic algorithm solving VRP-SDPTW is constructed. The algorithm could overcome the traditional genetic algorithm premature convergence defects. The example shows that the improved genetic algorithm can be effective in the short period of time to obtain the satisfactory solution of the VRP-SDPTW.


Sign in / Sign up

Export Citation Format

Share Document